Valutare$\int \frac{\arctan^6(3x)}{9x^2+1}dx$
Aug 22 2020
Valutare$$\int \frac{\arctan^6(3x)}{9x^2+1}dx\,.$$
Il mio tentativo.
Permettere$u=\arctan(3x)$. Quindi$du = \frac{1}{9x^2+1}(3x)^\prime = \frac{3}{9x^2+1}$e$$ \int \frac{\arctan^6(3x)}{9x^2+1}dx = \int \frac{u^6}{3}du = \frac{u^7}{21} + C = \frac{\arctan^7(3x)}{21} + C\,. $$È corretto?
Risposte
1 J.G. Aug 21 2020 at 22:46
La tua soluzione è corretta. Se desideri un controllo di integrità, puoi ottenere lo stesso risultato con l'integrazione per parti, vale a dire.$$u=\arctan^6(3x),\,v=\tfrac13\arctan(3x).$$