Valutare $\int \frac{\sin^{3/2}(a)+\cos^{3/2}(a)}{\sqrt{\sin^3(a)\cos^3(a)\sin(a+b)}}\,da$
Valutare $$ \int \frac{\sin^{3/2}(a)+\cos^{3/2}(a)}{\sqrt{\sin^3(a)\cos^3(a)\sin(a+b)}}\,da $$
Il mio tentativo: risistemare l'integrale originale $$ \int \frac{{1+\tan^{3/2}}(a)}{\sqrt{\sin^3(a)\sin(a+b)}}\,da = \int \frac{{(1+\tan^{3/2}}(a))\sec^2(a)}{\sqrt{\tan^4(a)\cos(b)+\tan^3(a)\sin(b)}}\,da $$ permettere $t=\tan a$ poi diventa $$ \int \frac{{1+t^{3/2}}}{\sqrt{t^4\cos b+t^3\sin b}}\,dt $$
ora sono bloccato. Qualcuno potrebbe darmi qualche suggerimento per procedere oltre o un metodo più semplice
Risposte
Suggerimento:
$\int \frac{\sin^{3/2}(a)+\cos^{3/2}(a)}{\sqrt{\sin^3(a)\cos^3(a)\sin(a+b)}}\,da$ = $\int \frac{1}{\sqrt{\sin^3(a)\sin(a+b)}}\,da + \int \frac{1}{\sqrt{\cos^3(a)\sin(a+b)}}\,da$
Prendi la prima parte adesso.
$\sqrt{\sin^3(a)\sin(a+b)} = \sqrt{\sin^4(a)(\cos b + \cot a \sin b)}$
dire, $t = \cos b + \cot a \sin b$
$dt = - \dfrac {1}{\sin^2(a)} \sin b \,da$
Quindi, primo integrale $\int \frac{1}{\sqrt{\sin^3(a)\sin(a+b)}}\,da = -\dfrac{1}{\sin b} \int \frac{1}{\sqrt t} \,dt$
Puoi fare la seconda parte in modo simile. Puoi prenderlo da qui?