パターンマッチングを使用してリスト内の要素を強調表示する
以下から開始list
:
list = {{a, b, c}, {d, e, f}, {g, h, i}, {b, c, d}, {c, a, m}, {c, d, n}};
list
交点が2より大きい要素を強調表示したいと思います。
次のコードは、私が望む結果を得ることができません:
list //.
{{a___, x:{_, _, _}, b___, y:{_, _, _}, c___} /;
Length@Intersection[x, y] >= 2 :>
{a, Style[x, Gray], b, Style[y, Gray], c}}

望ましい結果は

私も検討Gather
しましたが、リストの順番が変わります。
更新:
エレガントではなく、方法を考えました
list //. {a___,x:({_,_,_}|F[{_,_,_}]),b___,y:({_,_,_}),c___}/;
Length[Intersection[x/.F->Identity,y]]>=2:>{a,F@x,b,F@y,c}
% /. F->Highlighted
回答
rg = RelationGraph[UnsameQ @ ## && Length@Intersection[##] >= 2 &, list]

hl = VertexList @ EdgeList @ rg
{{a, b, c}, {b, c, d}, {c, a, m}, {c, d, n}}
list /. x : Alternatives @@ hl :> Style[x, Gray]

list /. x : Alternatives @@ hl :> Highlighted[x, BaseStyle -> Red]

HighlightGraph[rg, hl]

ConnectedComponents複数の頂点を持つコンポーネントを使用して選択することもできます。
ccs = Select[Length @ # >= 2 &] @ ConnectedComponents[rg]
{{{a, b, c}, {b, c, d}, {c, a, m}, {c, d, n}}}
list /. x : Alternatives @@ # :> Highlighted[x, BaseStyle -> Red]& /@ ccs

ClearAll[formatList]
formatList[list_] := Module[{rules},
rules =
AssociationThread[
list -> (If[Max[#] >= 2, Gray, Black] & /@
Function[{element},
Length@Intersection[element, #] & /@
Complement[list, {element}]] /@ list)
];
Style[#, rules[#]] & /@ list
]
formatList[list]

のネストを回避するOPのソリューションの変形Highlighted
:
list //. {a___, x : ({_, _, _} | Highlighted[{_, _, _}, ___]), b___,
y : ({_, _, _}), c___} /; Length[Intersection[x /. Highlighted -> (# &), y]] >= 2 :>
{a, Highlighted[x /. Highlighted -> (# &)], b, Highlighted@y, c}

を使用した同じアプローチStyle
:
list //. {a___, x : ({_, _, _} | Style[{_, _, _}, ___]), b___,
y : ({_, _, _}), c___} /; Length[Intersection[x /. Style -> (# &), y]] >= 2 :>
{a, Style[x /. Style -> (# &), Gray], b, Style[y /. Style -> (# &), Gray], c}

簡単な方法は、まだGather
インデックスを使用して並べ替えることだと思います。ここでは、一般的な状況を扱います。
SeedRandom[400];
list = Table[RandomSample[Alphabet[], 3], 40];
newlist = Thread[Range[Length@list] -> list];
result = Gather[newlist,
Length[Intersection[Last@#1, Last@#2]] >= 2 &];
keys = Keys /@ result;
keyc = Thread[keys -> RandomColor[Length@keys]]
map[j_] :=
MapAt[Style[#, Last@keyc[[j]], Bold] &, List /@ First@keyc[[j]]];
fig = Composition[Sequence @@ Table[map[j], {j, 1, Length@keyc}]]@
list
Grid[Partition[fig, 8], Frame -> All]

list /. x : {__Symbol} /;
Max[Length[Intersection[x, #]] & /@ DeleteCases[list, x]] >= 2 :>
Style[x, Gray]

を使用する方法GatherBy
:
gb = Join @@ Select[Length@# > 1 &]@
GatherBy[list, Function[x, Max[Length[Intersection[x, #]] & /@ DeleteCases[x][list]]]]
{{a, b, c}, {b, c, d}, {c, a, m}, {c, d, n}}
list /. x : Alternatives @@ gb :> Style[x, Gray]

なぜGather
機能しないのですか:
より簡単な例をとると:
list2 = Partition[Range@5, 3, 1];
GatherBy[list2, Function[x, Max[Length[Intersection[x, #]] & /@
DeleteCases[x][list2]] >= 2]]
{{{1, 2, 3}, {2, 3, 4}, {3, 4, 5}}}
Gather[list2, Length[Intersection[##]] >= 2 &]
{{{1, 2, 3}, {2, 3, 4}}, {{3, 4, 5}}}
Gather
入力リストのすべてのペアでテスト機能を実行するわけではありません。テスト関数True
がペアに対して評価する場合{p1, p2}
(p1
およびp2
がグループ化されるように)、ペア{p1, p3}
はテストさ{p2, p3}
れますが、Trace
出力に示されているようにスキップされます。
Trace[Gather[list2, Length[Intersection[##]] >= 2 &]] // Rest // Rest // Column

注トリプルもの{2, 3, 4}
と{3, 4, 5}
されている比較していないので({2, 3, 4}
れる既に集め}。
さらに別のアプローチはUnion
、条件を満たす2つのサブセットを使用することです。
highlighted = Union @@ Select[Length[Intersection @@ #] >= 2 &] @ Subsets[list, {2}]
{{a, b, c}, {b, c, d}, {c, a, m}, {c, d, n}}
list /. x : Alternatives @@ highlighted :> Style[x, Gray]
