Comment dessiner les hyperplans pour SVM One-Versus-All?

Nov 26 2020

J'essayais de dessiner les hyperplans lorsque SVM-OVA a été réalisé comme suit:

import matplotlib.pyplot as plt
import numpy as np
from sklearn.svm import SVC
x = np.array([[1,1.1],[1,2],[2,1]])
y = np.array([0,100,250])
classifier = OneVsRestClassifier(SVC(kernel='linear'))

Sur la base de la réponse à cette question Plot hyperplane Linear SVM python , j'ai écrit le code suivant:

fig, ax = plt.subplots()
# create a mesh to plot in
x_min, x_max = x[:, 0].min() - 1, x[:, 0].max() + 1
y_min, y_max = x[:, 1].min() - 1, x[:, 1].max() + 1
xx2, yy2 = np.meshgrid(np.arange(x_min, x_max, .2),np.arange(y_min, y_max, .2))
Z = classifier.predict(np.c_[xx2.ravel(), yy2.ravel()])
Z = Z.reshape(xx2.shape)
ax.contourf(xx2, yy2, Z, cmap=plt.cm.winter, alpha=0.3)
ax.scatter(x[:, 0], x[:, 1], c=y, cmap=plt.cm.winter, s=25)

# First line: class1 vs (class2 U class3)
w = classifier.coef_[0]
a = -w[0] / w[1]
xx = np.linspace(-5, 5)
yy = a * xx - (classifier.intercept_[0]) / w[1]
ax.plot(xx,yy)

# Second line: class2 vs (class1 U class3)
w = classifier.coef_[1]
a = -w[0] / w[1]
xx = np.linspace(-5, 5)
yy = a * xx - (classifier.intercept_[1]) / w[1]
ax.plot(xx,yy)

# Third line: class 3 vs (class2 U class1)
w = classifier.coef_[2]
a = -w[0] / w[1]
xx = np.linspace(-5, 5)
yy = a * xx - (classifier.intercept_[2]) / w[1]
ax.plot(xx,yy)

Cependant, voici ce que j'ai obtenu:

Les lignes sont clairement fausses: en fait, les coefficients angulaires semblent corrects, mais pas les intersections. En particulier, la ligne orange serait correcte si elle était traduite par 0,5 vers le bas, la verte si elle était traduite par 0,5 vers la gauche et la bleue si elle était traduite par 1,5 vers le haut.

Ai-je tort de tracer les lignes ou le classificateur ne fonctionne pas correctement à cause du peu de points d'entraînement?

Réponses

5 meTchaikovsky Dec 01 2020 at 12:38

Le problème est que le Cparamètre de SVCest trop petit (par défaut 1.0). Selon ce post ,

Inversement, une très petite valeur de C amènera l'optimiseur à rechercher un hyperplan de séparation à plus grande marge, même si cet hyperplan classifie mal plus de points.

Par conséquent, la solution est d'utiliser un beaucoup plus grand C, par exemple1e5

import matplotlib.pyplot as plt
import numpy as np
from sklearn.svm import SVC
from sklearn.multiclass import OneVsRestClassifier


x = np.array([[1,1.1],[1,2],[2,1]])
y = np.array([0,100,250])
classifier = OneVsRestClassifier(SVC(C=1e5,kernel='linear'))
classifier.fit(x,y)

fig, ax = plt.subplots()
# create a mesh to plot in
x_min, x_max = x[:, 0].min() - 1, x[:, 0].max() + 1
y_min, y_max = x[:, 1].min() - 1, x[:, 1].max() + 1
xx2, yy2 = np.meshgrid(np.arange(x_min, x_max, .2),np.arange(y_min, y_max, .2))
Z = classifier.predict(np.c_[xx2.ravel(), yy2.ravel()])
Z = Z.reshape(xx2.shape)
ax.contourf(xx2, yy2, Z, cmap=plt.cm.winter, alpha=0.3)
ax.scatter(x[:, 0], x[:, 1], c=y, cmap=plt.cm.winter, s=25)

def reconstruct(w,b):

    k = - w[0] / w[1]
    b = - b[0] / w[1]

    if k >= 0:
        x0 = max((y_min-b)/k,x_min)
        x1 = min((y_max-b)/k,x_max)
    else:
        x0 = max((y_max-b)/k,x_min)
        x1 = min((y_min-b)/k,x_max)
    if np.abs(x0) == np.inf: x0 = x_min
    if np.abs(x1) == np.inf: x1 = x_max
    
    xx = np.linspace(x0,x1)
    yy = k*xx+b

    return xx,yy

xx,yy = reconstruct(classifier.coef_[0],classifier.intercept_[0])
ax.plot(xx,yy,'r')
xx,yy = reconstruct(classifier.coef_[1],classifier.intercept_[1])
ax.plot(xx,yy,'g')
xx,yy = reconstruct(classifier.coef_[2],classifier.intercept_[2])
ax.plot(xx,yy,'b')

Cette fois, parce qu'un beaucoup plus grand Cest adopté, le résultat semble meilleur