Trouvez la valeur minimale dans un dataframe Pandas et ajoutez une étiquette sur une nouvelle colonne

Dec 18 2020

Quelles améliorations puis-je apporter à mon code python pandas pour le rendre plus efficace? Pour mon cas, j'ai ce dataframe

In [1]: df = pd.DataFrame({'PersonID': [1, 1, 1, 2, 2, 2, 3, 3, 3],
                           'Name': ["Jan", "Jan", "Jan", "Don", "Don", "Don", "Joe", "Joe", "Joe"],
                           'Label': ["REL", "REL", "REL", "REL", "REL", "REL", "REL", "REL", "REL"],
                           'RuleID': [55, 55, 55, 3, 3, 3, 10, 10, 10],
                           'RuleNumber': [3, 4, 5, 1, 2, 3, 234, 567, 999]})

Ce qui donne ce résultat:

In [2]: df
Out[2]: 
   PersonID Name Label  RuleID  RuleNumber
0         1  Jan   REL      55          3
1         1  Jan   REL      55          4
2         1  Jan   REL      55          5
3         2  Don   REL       3          1
4         2  Don   REL       3          2
5         2  Don   REL       3          3
6         3  Joe   REL      10        234
7         3  Joe   REL      10        567
8         3  Joe   REL      10        999

Ce que je dois accomplir ici est de mettre à jour les champs sous la colonne Libellé sur MAIN pour la valeur de règle la plus basse associée à chaque ID de règle qui est appliqué à un ID et un nom de personne. Par conséquent, les résultats doivent ressembler à ceci:

In [3]: df
Out[3]:
   PersonID Name Label  RuleID  RuleNumber
0         1  Jan  MAIN      55           3
1         1  Jan   REL      55           4
2         1  Jan   REL      55           5
3         2  Don  MAIN       3           1
4         2  Don   REL       3           2
5         2  Don   REL       3           3
6         3  Joe  MAIN      10         234
7         3  Joe   REL      10         567
8         3  Joe   REL      10         999

Voici le code que j'ai écrit pour accomplir cela:

In [4]:

df['Label'] = np.where(
        df['RuleNumber'] ==
        df.groupby(['PersonID', 'Name', 'RuleID'])['RuleNumber'].transform('min'),
        "MAIN", df.Label)

Existe-t-il un meilleur moyen de mettre à jour les valeurs sous la colonne Libellé? J'ai l'impression de me frayer un chemin brutalement et ce n'est peut-être pas le moyen le plus efficace de le faire.

J'ai utilisé les fils SO suivants pour arriver à mon résultat:

Remplacer les valeurs de colonne dans un groupby et une condition

Remplacer les valeurs au sein d'un groupby en fonction de plusieurs conditions

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.idxmin.html

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.transform.html

Utilisation de pandas pour rechercher les valeurs minimales de lignes groupées

Tout avis sera le bienvenu.

Merci.

Réponses

1 DavidErickson Dec 18 2020 at 03:14

Il semble que vous puissiez filtrer par groupe idxminquel que soit l'ordre trié et mettre à jour en RuleNumberfonction de cela. Vous pouvez utiliser loc, np.where, maskou wherecomme suit:

df.loc[df.groupby(['PersonID', 'Name', 'RuleID'])['RuleNumber'].idxmin(), 'Label'] = 'MAIN'

OU avec np.wherecomme vous essayiez:

df['Label'] = (np.where((df.index == df.groupby(['PersonID', 'Name', 'RuleID'])
                         ['RuleNumber'].transform('idxmin')), 'MAIN', 'REL'))
df
Out[1]: 
   PersonID Name Label  RuleID  RuleNumber
0         1  Jan  MAIN      55           3
1         1  Jan   REL      55           4
2         1  Jan   REL      55           5
3         2  Don  MAIN       3           1
4         2  Don   REL       3           2
5         2  Don   REL       3           3
6         3  Joe  MAIN      10         234
7         3  Joe   REL      10         567
8         3  Joe   REL      10         999

Utiliser maskou son inverse wherefonctionnerait également:

df['Label'] = (df['Label'].mask((df.index == df.groupby(['PersonID', 'Name', 'RuleID'])
                         ['RuleNumber'].transform('idxmin')), 'MAIN'))

OU

df['Label'] = (df['Label'].where((df.index != df.groupby(['PersonID', 'Name', 'RuleID'])
                         ['RuleNumber'].transform('idxmin')), 'MAIN'))
1 Scared Dec 18 2020 at 03:25
import pandas as pd

df = pd.DataFrame({'PersonID': [1, 1, 1, 2, 2, 2, 3, 3, 3],
'Name': ["Jan", "Jan", "Jan", "Don", "Don", "Don", "Joe", "Joe", "Joe"],
'Label': ["REL", "REL", "REL", "REL", "REL", "REL", "REL", "REL", "REL"],
'RuleID': [55, 55, 55, 3, 3, 3, 10, 10, 10],
'RuleNumber': [3, 4, 5, 1, 2, 3, 234, 567, 999]})

df.loc[df.groupby('Name')['RuleNumber'].idxmin()[:], 'Label'] = 'MAIN'
ScottBoston Dec 18 2020 at 03:45

Utiliser duplicatedsur PersonID:

df.loc[~df['PersonID'].duplicated(),'Label'] = 'MAIN'
print(df)

Production:

   PersonID Name Label  RuleID  RuleNumber
0         1  Jan  MAIN      55           3
1         1  Jan   REL      55           4
2         1  Jan   REL      55           5
3         2  Don  MAIN       3           1
4         2  Don   REL       3           2
5         2  Don   REL       3           3
6         3  Joe  MAIN      10         234
7         3  Joe   REL      10         567
8         3  Joe   REL      10         999