Calcolo della tensione a circuito aperto di Thevenin

Aug 21 2020

Non sono sicuro di come calcolare \$V_{Th}\$con il circuito sottostante.

Ho tentato di ridurre il circuito sottostante nel seguente circuito, ma non sono sicuro che sia corretto. Qualcuno può confermare che sto prendendo le misure appropriate?

Risposte

1 Jan Aug 24 2020 at 23:31

Bene, sto cercando di analizzare il seguente circuito:

simula questo circuito : schema creato utilizzando CircuitLab

Quando usiamo e applichiamo KCL , possiamo scrivere il seguente insieme di equazioni:

$$ \begin{cases} \text{I}_\text{a}=\text{I}_1+\text{I}_5\\ \\ \text{I}_5=\text{I}_2+\text{I}_3\\ \\ \text{I}_4=\text{I}_\text{b}+\text{I}_3\\ \\ \text{I}_1=\text{I}_\text{a}+\text{I}_6\\ \\ 0=\text{I}_2+\text{I}_6+\text{I}_7\\ \\ \text{I}_4=\text{I}_\text{b}+\text{I}_7 \end{cases}\tag1 $$

Quando usiamo e applichiamo la legge di Ohm , possiamo scrivere il seguente insieme di equazioni:

$$ \begin{cases} \text{I}_1=\frac{\text{V}_1}{\text{R}_1}\\ \\ \text{I}_2=\frac{\text{V}_1}{\text{R}_2}\\ \\ \text{I}_3=\frac{\text{V}_1-\text{V}_2}{\text{R}_3}\\ \\ \text{I}_4=\frac{\text{V}_2}{\text{R}_4}\\ \\ \text{I}_\text{b}=\frac{\text{V}_3-\text{V}_2}{\text{R}_5} \end{cases}\tag2 $$

Poiché hai già la risposta, presenterò un metodo che utilizza Mathematica per risolvere questo problema. Ho usato il seguente codice per risolvere i due sistemi dall'alto:

In[1]:=FullSimplify[
 Solve[{Ia == I1 + I5, I5 == I2 + I3, I4 == Ib + I3, I1 == Ia + I6, 
   0 == I2 + I6 + I7, I4 == Ib + I7, I1 == V1/R1, I2 == V1/R2, 
   I3 == (V1 - V2)/R3, I4 == V2/R4, Ib == (V3 - V2)/R5}, {I1, I2, I3, 
   I4, I5, I6, I7, V1, V2, V3}]]

Out[1]={{I1 -> (R2 (Ib R4 + Ia (R3 + R4)))/(
   R2 (R3 + R4) + R1 (R2 + R3 + R4)), 
  I2 -> (R1 (Ib R4 + Ia (R3 + R4)))/(
   R2 (R3 + R4) + R1 (R2 + R3 + R4)), 
  I3 -> (Ia R1 R2 - Ib (R1 + R2) R4)/(
   R2 (R3 + R4) + R1 (R2 + R3 + R4)), 
  I4 -> ((Ia + Ib) R1 R2 + Ib (R1 + R2) R3)/(
   R2 (R3 + R4) + R1 (R2 + R3 + R4)), 
  I5 -> (-Ib R2 R4 + Ia R1 (R2 + R3 + R4))/(
   R2 (R3 + R4) + R1 (R2 + R3 + R4)), 
  I6 -> (Ib R2 R4 - Ia R1 (R2 + R3 + R4))/(
   R2 (R3 + R4) + R1 (R2 + R3 + R4)), 
  I7 -> (Ia R1 R2 - Ib (R1 + R2) R4)/(
   R2 (R3 + R4) + R1 (R2 + R3 + R4)), 
  V1 -> (R1 R2 (Ib R4 + Ia (R3 + R4)))/(
   R2 (R3 + R4) + R1 (R2 + R3 + R4)), 
  V2 -> (((Ia + Ib) R1 R2 + Ib (R1 + R2) R3) R4)/(
   R2 (R3 + R4) + R1 (R2 + R3 + R4)), 
  V3 -> Ia R4 + Ib R4 - ((R1 + R2) R4 (Ib R4 + Ia (R3 + R4)))/(
    R2 (R3 + R4) + R1 (R2 + R3 + R4)) + Ib R5}}

Per trovare l'equivalenza di Thevenin, dobbiamo prendere un bottino alla tensione a circuito aperto \$\text{V}_\text{th}=\text{V}_1-\text{V}_2\$(quando \$\text{R}_3\to\infty\$) e alla corrente di corto circuito \$\text{I}_3\$(quando \$\text{R}_3\to0\$):

In[2]:=FullSimplify[
 Solve[{Ia == I1 + I5, I5 == I2 + I3, I4 == Ib + I3, I1 == Ia + I6, 
   0 == I2 + I6 + I7, I4 == Ib + I7, I1 == V1/R1, I2 == V1/R2, 
   I3 == (V1 - V2)/Infinity, I4 == V2/R4, Ib == (V3 - V2)/R5}, {I1, 
   I2, I3, I4, I5, I6, I7, V1, V2, V3}]]

Out[2]={{I1 -> (Ia R2)/(R1 + R2), I2 -> (Ia R1)/(R1 + R2), I3 -> 0, I4 -> Ib,
   I5 -> (Ia R1)/(R1 + R2), I6 -> -((Ia R1)/(R1 + R2)), I7 -> 0, 
  V1 -> (Ia R1 R2)/(R1 + R2), V2 -> Ib R4, V3 -> Ib (R4 + R5)}}

In[3]:=FullSimplify[(Ia R1 R2)/(R1 + R2) - Ib R4]

Out[3]=(Ia R1 R2)/(R1 + R2) - Ib R4

In[4]:=Limit[(Ia R1 R2 - Ib (R1 + R2) R4)/(R2 (R3 + R4) + R1 (R2 + R3 + R4)),
  R3 -> 0]

Out[4]=(Ia R1 R2 - Ib (R1 + R2) R4)/(R2 R4 + R1 (R2 + R4))

Quindi, usando i tuoi valori otteniamo:

  • $$\text{V}_\text{th}=-\frac{11}{3}\approx-3.66667\space\text{V}\tag3$$
  • $$\text{I}_\text{th}=-\frac{11}{5}=-2.2\space\text{A}\tag4$$
  • $$\text{R}_\text{th}=\frac{\text{V}_\text{th}}{\text{I}_\text{th}}=\frac{5}{3}\approx1.66667\space\Omega\tag5$$