Mostrando$K(\sqrt \alpha)/F$è Galois se e solo se$\sigma(\alpha)/\alpha$è un'unità e un quadrato.
Vorrei aiuto per risolvere il seguente problema:
Supponiamo che$K/F$è un'estensione di Galois finita e$\text{char} F \neq 2$. Permettere$G:= \text{Gal}(K/F)$sia il suo gruppo di Galois e let$\alpha \in K^\times$. Mostralo$K(\sqrt{\alpha})/F$è un'estensione di Galois se e solo se$\frac{\sigma(\alpha)}{\alpha} \in K^{\times 2}$per tutti$\sigma \in G$, dove$K^{\times 2} := \{x^2 \mid x \in K^\times\}$.
Ho parte di una soluzione per l'implicazione inversa, ma non sono sicuro di dove utilizzo l'ipotesi, quindi non sono sicuro della sua validità.
La mia argomentazione è la seguente: se$\alpha$è un quadrato perfetto, allora$K(\sqrt{\alpha}) = K$e la soluzione è banale. Supponiamo$\alpha$non è un quadrato perfetto. Allora, il polinomio minimo di$\sqrt \alpha$Sopra$K$è$x^2 - \alpha$. Questo significa$[K(\sqrt\alpha) : K] = 2$. Per la legge della torre, abbiamo$[K(\sqrt{\alpha}), F] = [K(\sqrt{\alpha}): K] [K : F] = 2 |G|$. Dato qualsiasi$\sigma \in G$, possiamo estenderlo ad un automorfismo di$K(\sqrt \alpha)$scegliendo se sigma invierà$\sqrt \alpha$a$+\sqrt{\sigma(\alpha)}$o$-\sqrt{\sigma(\alpha)}$(VEDI MODIFICA SOTTO). Come$\text{char} F \neq 2$, questo dà 2 scelte per ogni$\sigma \in G$, quindi possiamo avere$2 |G|$automorfismi, così costruiti. Come$|\text{Gal}(K(\sqrt \alpha), F)|$è delimitato sopra da$[K(\sqrt \alpha): F] = 2|G|$, abbiamo costruito ogni possibile automorfismo e$|\text{Gal}(K(\sqrt \alpha), F)| = [K(\sqrt \alpha): F]$, quindi l'estensione è Galois.
Per quanto posso dire, questo non usa l'ipotesi su$\frac{\sigma(\alpha)}{\alpha}$, quindi sono scettico.
Un aiuto con entrambe le direzioni della dimostrazione sarebbe molto apprezzato.
Modifica: seguendo i commenti di Μάρκος Καραμέρης, come$\sigma(\alpha) = \alpha . k^2$,$\sigma(\sqrt(\alpha)) = \pm k \sqrt \alpha$, per alcuni fissi$k \in K^\times$. Questo ci dà le nostre estensioni da$\sigma \in \text{Gal}(K/F)$a qualche coppia$\sigma_+, \sigma_- \in K(\sqrt \alpha)$, dove$\sigma_\pm (\sqrt(\alpha)) = \pm k \sqrt \alpha$. Questo completa l'implicazione inversa.
Risposte
Come ho accennato nei commenti, il problema è quello in generale$\sqrt{\sigma(a)}$potrebbe non esserci$K(\sqrt{a})$. Si noti che se$E$è la chiusura di Galois$|K(\sqrt{a}):F|$poi$\sqrt{\sigma(a)}\in E$Così$|K(\sqrt{a}):F|$è Galois se e solo se$E=K(\sqrt{a}) \iff \sqrt{\sigma(a)}\in K(\sqrt{a}), \forall\sigma\in G$
Supponiamo$a$non è un quadrato.
Dobbiamo solo dimostrarlo$\sqrt{\sigma(a)}\in K(\sqrt{a}) \iff \sqrt{\sigma(a)}=k\sqrt{a},k\in K$. Una direzione è immediata:$\sigma(a)=k^2a\implies \sqrt{\sigma(a)}=k\sqrt{a}\in K(\sqrt{a})$.
Per l'altra direzione:$\sqrt{\sigma(a)}\in K(\sqrt{a}) \implies \sqrt{\sigma(a)}=k_1+k_2\sqrt{a}$insieme a$k_{1,2}\in K(a) \implies \sigma(a)={k_1}^2+a{k_2}^2+2k_1k_2\sqrt{a}$. Da$\sqrt{a}\not\in K(a)$noi dobbiamo avere$k_1=0$o$k_2=0$, il successivo implica$\sqrt{\sigma(a)}\in K \implies\sqrt{a}\in K$producendo una contraddizione. Così dobbiamo avere$k_1=0$e$\sigma(a)={k_2}^2a$insieme a$k_2\in K$.
La domanda in realtà si estende alla seguente impostazione:$F$contiene il gruppo$\mu_n$di$n$-esima radice di$1$, car$F$non divide$n$,$K/F$è galois con il gruppo$G$; poi per$a\in K^\times$,$L:=K(\sqrt [n]a)$è finita$F$se$s(a)/a \in $per tutti$s\in G$.
Dimostrazione : per chiarezza, ricordiamo che la notazione (ambigua).$\sqrt [n]a$significa solo una scelta arbitraria $n$-esima radice di$a$in una chiusura separabile di$F$. Inoltre, l'estensione$L/K$dipende solo dalla classe$[a]$di$a$mod${K^\times}^n$, quindi sarà conveniente scrivere$L=K(\sqrt [n]{[a]})$. Il vantaggio di questa nuova notazione è che$K(\sqrt [n]{[a]})=K(\sqrt [n]{[b]})$se$[a]=[b]$in${K^\times}/{K^\times}^n$.
La separabilità di$L/F$assicurata dall'ipotesi sul char$F$, dobbiamo solo mostrare la normalità. Qualunque$s\in G$può essere esteso a un$F$-omomorfismo$\bar s$("incorporamento") di$L$in una chiusura separabile. La normalità di$L/F$è quindi equivalente alla stabilità di$L$sotto ogni$\bar s$. Per definizione,$(\bar s(\sqrt [n]a))^n=\bar s(a)=s(a)$, quindi le osservazioni preliminari di cui sopra mostrano che la ricercata normalità è equivalente a$[s(a)]=[a]$, in altre parole$s(a)/a\in {K^\times}^n$per tutti$s\in G$. Si noti che per tutto il tempo abbiamo utilizzato solo la struttura moltiplicativa dei campi coinvolti, non la loro struttura additiva. Questo approccio permette anche (ma sono necessari strumenti coomologici) di descrivere esplicitamente il gruppo$\bar G=Gal(L/K)$a partire da$G$. Ad esempio, se$n=2$e$G=C_2 \times C_2$, si possono derivare criteri per$\bar G$essere$C_2\times C_2 \times C_2$, o$D_4$, o$H_4$.