permettere $\mathbf a$ e $\mathbf b$essere vettori 3D. Trova un $3\times3$ matrice $\mathbf R$ tale che $\mathbf {Ra} = \mathbf a_{\bot \mathbf b}$.

Aug 15 2020

Ciao come dice il titolo sto cercando di trovare questo.

permettere $\mathbf a$ e $\mathbf b$essere vettori 3D. Trova un$3\times3$ matrice $\mathbf R$ tale che $\mathbf {Ra} = \mathbf a_{\bot \mathbf b}$.

secondo i miei esercizi la risposta è

$$ R = \frac{1}{b^2} \begin{bmatrix} b^2_y+b^2_z & -b_xb_y & -b_xb_z \\ -b_xb_y & b^2_x+b^2_z & -b_yb_z \\ -b_xb_z & -b_yb_z & b^2_x+b^2_y \\ \end{bmatrix} $$

Non sono stato in grado di arrivare a questa soluzione e sono riuscito ad arrivare fino a

$$ a_{\bot b} = a - a_{||b} = a - \frac{a\cdot b}{b^2}b $$ e posso sostituire $ a_{||b} $ per la sua espressione come prodotto matrice $$ a_{||b} = \frac{1}{b^2}bb^{\mathrm T}a $$ e questo è un prodotto esterno così diventa $$a_{\bot b} = \frac{1}{b^2}\begin{bmatrix} b^2_x & b_xb_y & b_xb_z \\ b_xb_y & b^2_y & b_yb_z \\ b_xb_z & b_yb_z & b^2_z+b^2_y \\ \end{bmatrix}\begin{bmatrix} a_x \\ a_y \\ a_z \\ \end{bmatrix}$$

da questo posso ottenere $$ Ra = a - \frac{1}{b^2}\begin{bmatrix} b^2_x & b_xb_y & b_xb_z \\ b_xb_y & b^2_y & b_yb_z \\ b_xb_z & b_yb_z & b^2_z+b^2_y \\ \end{bmatrix}\begin{bmatrix} a_x \\ a_y \\ a_z \\ \end{bmatrix} $$ Questo è quanto sono riuscito a ottenere e non sono sicuro dei passaggi necessari per portare l'ultima equazione alla prima.

Grazie per qualsiasi informazione che chiunque può fornire.

Risposte

1 AndrewShedlock Aug 16 2020 at 01:39

Gli ultimi passi saranno $$ \begin{align*} Ra &= a - \frac{1}{b^2}\begin{bmatrix}b_x^2 & b_xb_y & b_xb_z\\ b_xb_y & b_y^2 & b_yb_z\\ b_xb_z & b_yb_z & b_z^2\end{bmatrix}a\\ &= \frac{1}{b^2}\Bigg(b^2I - \begin{bmatrix}b_x^2 & b_xb_y & b_xb_z\\ b_xb_y & b_y^2 & b_yb_z\\ b_xb_z & b_yb_z & b_z^2\end{bmatrix}\Bigg)a \\ \end{align*}$$ Notare che $b^2 = b_x^2 + b_y^2 + b_z^2$. Così$$\begin{align*} Ra &= \frac{1}{b^2}\Bigg(\begin{bmatrix}b_x^2 + b_y^2 + b_z^2& 0 & 0\\ 0 & b_x^2 + b_y^2 + b_z^2 & 0\\ 0 & 0 & b_x^2 + b_y^2 + b_z^2\end{bmatrix}-\begin{bmatrix}b_x^2 & b_xb_y & b_xb_z\\ b_xb_y & b_y^2 & b_yb_z\\ b_xb_z & b_yb_z & b_z^2\end{bmatrix}\Bigg)a \\ &= \frac{1}{b^2}\begin{bmatrix}b_y^2 + b_z^2 & -b_xb_y & -b_xb_z\\ -b_xb_y & b_x^2 + b_z^2 & -b_yb_z\\ -b_xb_z & -b_yb_z & b_x^2 + b_y^2\end{bmatrix}a\end{align*} $$ Quindi $$ R = \frac{1}{b^2}\begin{bmatrix}b_y^2 + b_z^2 & -b_xb_y & -b_xb_z\\ -b_xb_y & b_x^2 + b_z^2 & -b_yb_z\\ -b_xb_z & -b_yb_z & b_x^2 + b_y^2\end{bmatrix}$$