繰り返しますが、numpyの可変サイズのチャンクで
さまざまなチャンクを連結した配列があります。
a = np.array([0, 1, 2, 10, 11, 20, 21, 22, 23])
# > < > < > <
chunks = np.array([3, 2, 4])
repeats = np.array([1, 3, 2])
上記の例の新しい10年で始まる各セグメントは、繰り返したい個別の「チャンク」です。チャンクのサイズと繰り返しの数は、それぞれについてわかっています。チャンクのサイズが異なるため、kron
またはそれに続く形状変更を行うことはできませんrepeat
。
私が望む結果は
np.array([0, 1, 2, 10, 11, 10, 11, 10, 11, 20, 21, 22, 23, 20, 21, 22, 23])
# repeats:> 1 < > 3 < > 2 <
これはループで簡単に実行できます。
in_offset = np.r_[0, np.cumsum(chunks[:-1])]
out_offset = np.r_[0, np.cumsum(chunks[:-1] * repeats[:-1])]
output = np.zeros((chunks * repeats).sum(), dtype=a.dtype)
for c in range(len(chunks)):
for r in range(repeats[c]):
for i in range(chunks[c]):
output[out_offset[c] + r * chunks[c] + i] = a[in_offset[c] + i]
これにより、次のベクトル化が行われます。
regions = chunks * repeats
index = np.arange(regions.sum())
segments = np.repeat(chunks, repeats)
resets = np.cumsum(segments[:-1])
offsets = np.zeros_like(index)
offsets[resets] = segments[:-1]
offsets[np.cumsum(regions[:-1])] -= chunks[:-1]
index -= np.cumsum(offsets)
output = a[index]
この問題をベクトル化するためのより効率的な方法はありますか?明確にするために、私はコードレビューを求めていません。これらの関数呼び出しがどのように連携するかに満足しています。同じ結果を達成するために使用できる関数呼び出しのまったく異なる(より効率的な)組み合わせがあるかどうかを知りたいです。
この質問は、この質問に対する私の答えに触発されました。
回答
他の答えよりもこれを解決するさらに「numpythonic」な方法は-
np.concatenate(np.repeat(np.split(a, np.cumsum(chunks))[:-1], repeats))
array([ 0, 1, 2, 10, 11, 10, 11, 10, 11, 20, 21, 22, 23, 20, 21, 22, 23])
明示的なforループがないことに注意してください。
(np.split
@Divakarによって指摘されているように暗黙のループがあります)。
編集:ベンチマーク(MacBook pro 13)-
@Mad Physicistが彼の投稿で指摘したように、Divakarのソリューションは、より大きな配列、チャンク、および繰り返しに対してより適切にスケーリングします。

(他の答えよりも)あなたのタスクを実行するためのより多くのnumpythonicな方法は次のとおりです:
result = np.concatenate([ np.tile(tbl, rpt) for tbl, rpt in
zip(np.split(a, np.cumsum(chunks[:-1])), repeats) ])
結果は次のとおりです。
array([ 0, 1, 2, 10, 11, 10, 11, 10, 11, 20, 21, 22, 23, 20, 21, 22, 23])
範囲配列であるこれらのチャンクの場合、入力配列を直接操作できるため、最後のインデックス作成ステップを回避でき、改善されるはずです-
# https://stackoverflow.com/a/47126435/ @Divakar
def create_ranges(starts, ends, l):
clens = l.cumsum()
ids = np.ones(clens[-1],dtype=int)
ids[0] = starts[0]
ids[clens[:-1]] = starts[1:] - ends[:-1]+1
out = ids.cumsum()
return out
s = np.r_[0,chunks.cumsum()]
starts = a[np.repeat(s[:-1],repeats)]
l = np.repeat(chunks, repeats)
ends = starts+l
out = create_ranges(starts, ends, l)
情報提供の目的で、ここで実用的なソリューションのベンチマークを行いました。
def MadPhysicist1(a, chunks, repeats):
in_offset = np.r_[0, np.cumsum(chunks[:-1])]
out_offset = np.r_[0, np.cumsum(chunks[:-1] * repeats[:-1])]
output = np.zeros((chunks * repeats).sum(), dtype=a.dtype)
for c in range(len(chunks)):
for r in range(repeats[c]):
for i in range(chunks[c]):
output[out_offset[c] + r * chunks[c] + i] = a[in_offset[c] + i]
return output
def MadPhysicist2(a, chunks, repeats):
regions = chunks * repeats
index = np.arange(regions.sum())
segments = np.repeat(chunks, repeats)
resets = np.cumsum(segments[:-1])
offsets = np.zeros_like(index)
offsets[resets] = segments[:-1]
offsets[np.cumsum(regions[:-1])] -= chunks[:-1]
index -= np.cumsum(offsets)
output = a[index]
return output
def create_ranges(starts, ends, l):
clens = l.cumsum()
ids = np.ones(clens[-1],dtype=int)
ids[0] = starts[0]
ids[clens[:-1]] = starts[1:] - ends[:-1]+1
out = ids.cumsum()
return out
def Divakar(a, chunks, repeats):
s = np.r_[0, chunks.cumsum()]
starts = a[np.repeat(s[:-1], repeats)]
l = np.repeat(chunks, repeats)
ends = starts+l
return create_ranges(starts, ends, l)
def Valdi_Bo(a, chunks, repeats):
return np.concatenate([np.tile(tbl, rpt) for tbl, rpt in
zip(np.split(a, np.cumsum(chunks[:-1])), repeats)])
def AkshaySehgal(a, chunks, repeats):
return np.concatenate(np.repeat(np.split(a, np.cumsum(chunks))[:-1], repeats))
私は3つの入力サイズのタイミングを見てきました:〜100、〜1000、〜10k要素:
np.random.seed(0xA)
chunksA = np.random.randint(1, 10, size=20) # ~100 elements
repeatsA = np.random.randint(1, 10, size=20)
arrA = np.random.randint(100, size=chunksA.sum())
np.random.seed(0xB)
chunksB = np.random.randint(1, 100, size=20) # ~1000 elements
repeatsB = np.random.randint(1, 10, size=20)
arrB = np.random.randint(100, size=chunksB.sum())
np.random.seed(0xC)
chunksC = np.random.randint(1, 100, size=200) # ~10000 elements
repeatsC = np.random.randint(1, 10, size=200)
arrC = np.random.randint(100, size=chunksC.sum())
結果は次のとおりです。
| | A | B | C |
+---------------+---------+---------+---------+
| MadPhysicist1 | 1.92 ms | 16 ms | 159 ms |
| MadPhysicist2 | 85.5 µs | 153 µs | 744 µs |
| Divakar | 75.9 µs | 95.9 µs | 312 µs |
| Valdi_Bo | 370 µs | 369 µs | 3.4 ms |
| AkshaySehgal | 163 µs | 165 µs | 1.24 ms |