การเลื่อนตัวเลขจากขวาไปซ้าย
จำนวนเต็มบวก n (โดยไม่มีเลขศูนย์นำหน้า) มีคุณสมบัติที่ทำให้ตัวเลขทางขวาสุดของ n ไปทางซ้ายสุดจะเพิ่มจำนวนเป็นสองเท่า
ตัวอย่าง: 1-> 1, 1234-> 4123, 2020-> 202
n ที่เล็กที่สุดในคุณสมบัตินี้คืออะไร?
คำตอบ
ฉันคิดว่าคำตอบคือ
$$N = 20 \left(\frac{10^{17} -2}{19}\right) + 2$$
หลักฐาน
สมมติว่าเราเขียนหมายเลขเดิมของเราเป็น $$N = a_n 10^n + a_{n-1}10^{n-1} +\ldots + a_0 = \displaystyle \sum_{j=0}^n a_j 10^j$$ จากนั้นสมการที่อธิบายไว้ในโจทย์คือ $$ 2 \displaystyle \sum_{j=0}^n a_j 10^j = a_0 10^n + \displaystyle \sum_{j=1}^n a_j 10^{j-1}$$ การจัดเรียงใหม่ให้ $$ \displaystyle \sum_{j=1}^n a_j ((2 \times 10^j) - 10^{j-1}) = a_0 (10^n - 2)$$ ซึ่งหมายความว่า $$ 19 \displaystyle \sum_{j=1}^n a_j 10^{j-1} = a_0 (10^n -2)$$ ตอนนี้สังเกตว่าด้านซ้ายมือหารด้วย $19$ ดังนั้นทางขวามือก็ต้องเป็นเช่นกัน $a_0$ เป็น coprime ถึง $19$นั่นหมายความว่า $10^n - 2$ หารด้วย $19$. ดังนั้นเรากำลังมองหาพลังที่เล็กที่สุดของ$10$ ซึ่งสอดคล้องกับ $2$ โมดูโล $19$.
จะผ่านพลังของ$10$ โมดูโล $19$ ให้ $10, 5, 12, 6, 3, 11, 15, 17, 18, 9, 14, 7, 13, 16, 8, 4, 2, \ldots$.
ดังนั้นพลังที่เล็กที่สุดของ$10$ ที่ใช้งานได้คือ $10^{17}$. การเสียบสิ่งนี้เข้ากับสมการของเราจะได้$$ \displaystyle \sum_{j=1}^{17} a_j 10^{j-1} = a_0 \frac{10^{17} -2}{19}$$ เห็นได้ชัดว่าเราไม่สามารถเลือกได้ $a_0=1$ เนื่องจากด้านขวามือจะมีตัวเลขน้อยเกินไป แต่ถ้าเราเลือก $a_0=2$ (เพื่อให้บรรลุขั้นต่ำ) ก็ดูปลอดภัยที่เราจะมี $17$- ตัวเลขทางด้านขวามือและเราสามารถเลือกส่วนที่เหลือของไฟล์ $a_j$ทางซ้ายอย่างเหมาะสม
ซึ่งหมายความว่ามีขนาดเล็กที่สุด$N$ ซึ่งจะต้องมีผลงาน $$N = 20 \left(\frac{10^{17} -2}{19}\right) + 2$$
ตรวจสอบคอมพิวเตอร์
การทำงานกับคอมพิวเตอร์ดูเหมือนว่าคุ้มค่า $N$ ด้านบนคือ $105263157894736842$ และเพิ่มสิ่งนี้เป็นสองเท่า $210526315789473684$ ดังนั้นจึงได้ผลจริง