Ajouter une distribution normale à l'histogramme 2D Seaborn

Nov 27 2020

Est-il possible de prendre un histogramme de seaborn et d'ajouter une distribution normale?

Disons que j'avais quelque chose comme ce nuage de points et cet histogramme de la documentation.

import seaborn as sns
penguins = sns.load_dataset("penguins")
sns.jointplot(data=penguins, x="bill_length_mm", y="bill_depth_mm");
plt.savefig('deletethis.png', bbox_inches='tight')

Puis-je superposer une distribution sur les côtés comme l'image ci-dessous?

import matplotlib.pyplot as plt
import numpy as np
from scipy.stats import norm

x = np.random.normal(size=100000)

# Plot histogram in one-dimension
plt.hist(x,bins=80,density=True)
xvals = np.arange(-4,4,0.01)
plt.plot(xvals, norm.pdf(xvals),label='$N(0,1)$')
plt.legend();

Réponses

2 RuthgerRighart Nov 27 2020 at 21:40

Ce qui suit donne une estimation de la densité du noyau qui affiche la distribution (et si elle est normale):

g = sns.JointGrid(data=penguins, x="bill_length_mm", y="bill_depth_mm")
g.plot_joint(sns.scatterplot, s=100, alpha=.5)
g.plot_marginals(sns.histplot, kde=True)

Ce qui suit superpose une distribution normale aux histogrammes dans les axes.

import seaborn as sns
import numpy as np
import pandas as pd
from scipy.stats import norm

df1 = penguins.loc[:,["bill_length_mm", "bill_depth_mm"]]

axs = sns.jointplot("bill_length_mm", "bill_depth_mm", data=df1)
axs.ax_joint.scatter("bill_length_mm", "bill_depth_mm", data=df1, c='r', marker='x')

axs.ax_marg_x.cla()
axs.ax_marg_y.cla()
sns.distplot(df1.bill_length_mm, ax=axs.ax_marg_x, fit=norm)
sns.distplot(df1.bill_depth_mm, ax=axs.ax_marg_y, vertical=True, fit=norm)