Comment ajouter plusieurs graphiques à l'application Dash sur une seule page de navigateur ?
entrez la description de l'image ici
Comment puis-je ajouter plusieurs graphiques affichés dans l'image sur une même page ? J'essaie d'ajouter des composants html.Div au code suivant pour mettre à jour la mise en page pour ajouter plus de graphiques comme celui-ci sur une seule page, mais ces graphiques nouvellement ajoutés ne sont pas affichés sur une page, seul l'ancien graphique est affiché dans l'image est visible. Quel élément dois-je modifier, par exemple pour ajouter un graphique affiché dans l'image téléchargée 3 fois sur une seule page de l'application Dash sur le navigateur ?
import dash
import dash_core_components as dcc
import dash_html_components as html
i[enter image description here][1]mport plotly.express as px
import pandas as pd
external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css']
app = dash.Dash(__name__, external_stylesheets=external_stylesheets)
# assume you have a "long-form" data frame
# see https://plotly.com/python/px-arguments/ for more options
df = pd.DataFrame({
"Fruit": ["Apples", "Oranges", "Bananas", "Apples", "Oranges", "Bananas"],
"Amount": [4, 1, 2, 2, 4, 5],
"City": ["SF", "SF", "SF", "Montreal", "Montreal", "Montreal"]
})
fig = px.bar(df, x="Fruit", y="Amount", color="City", barmode="group")
app.layout = html.Div(children=[
html.H1(children='Hello Dash'),
html.Div(children='''
Dash: A web application framework for Python.
'''),
dcc.Graph(
id='example-graph',
figure=fig
)
])
if __name__ == '__main__':
app.run_server(debug=True)
Réponses
Pour ajouter plusieurs fois le même chiffre, il vous suffit d'étendre votre fichier app.layout
. J'ai étendu votre code ci-dessous à titre d'exemple.
import dash
import dash_core_components as dcc
import dash_html_components as html
from dash.dependencies import Input, Output
import pandas as pd
import plotly.express as px
external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css']
app = dash.Dash(__name__, external_stylesheets=external_stylesheets)
# assume you have a "long-form" data frame
# see https://plotly.com/python/px-arguments/ for more options
df_bar = pd.DataFrame({
"Fruit": ["Apples", "Oranges", "Bananas", "Apples", "Oranges", "Bananas"],
"Amount": [4, 1, 2, 2, 4, 5],
"City": ["SF", "SF", "SF", "Montreal", "Montreal", "Montreal"]
})
fig = px.bar(df_bar, x="Fruit", y="Amount", color="City", barmode="group")
app.layout = html.Div(children=[
# All elements from the top of the page
html.Div([
html.H1(children='Hello Dash'),
html.Div(children='''
Dash: A web application framework for Python.
'''),
dcc.Graph(
id='graph1',
figure=fig
),
]),
# New Div for all elements in the new 'row' of the page
html.Div([
html.H1(children='Hello Dash'),
html.Div(children='''
Dash: A web application framework for Python.
'''),
dcc.Graph(
id='graph2',
figure=fig
),
]),
])
if __name__ == '__main__':
app.run_server(debug=True)
La façon dont j'ai structuré la mise en page consiste à imbriquer les html.Div
composants. Pour chaque figure et les titres, textes, etc. correspondants, nous en créons un autre html.Div
qui crée une nouvelle "ligne" dans notre application.
La seule chose à garder à l'esprit est que les différents composants ont besoin d'identifiants uniques . Dans cet exemple, nous avons le même graphique affiché deux fois, mais il ne s'agit pas exactement du même objet. Nous fabriquons deux dcc.Graph
objets en utilisant la même figure plotly.express
J'ai fait un autre exemple pour vous où j'ai ajouté une autre figure qui est dynamique . Le deuxième chiffre est mis à jour chaque fois qu'une nouvelle échelle de couleurs est sélectionnée dans le menu déroulant. C'est là que réside le véritable potentiel des mensonges de Dash. Vous pouvez en savoir plus sur les fonctions de rappel dans ce tutoriel
import dash
import dash_core_components as dcc
import dash_html_components as html
from dash.dependencies import Input, Output
import pandas as pd
import plotly.express as px
external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css']
app = dash.Dash(__name__, external_stylesheets=external_stylesheets)
# assume you have a "long-form" data frame
# see https://plotly.com/python/px-arguments/ for more options
df_bar = pd.DataFrame({
"Fruit": ["Apples", "Oranges", "Bananas", "Apples", "Oranges", "Bananas"],
"Amount": [4, 1, 2, 2, 4, 5],
"City": ["SF", "SF", "SF", "Montreal", "Montreal", "Montreal"]
})
fig = px.bar(df_bar, x="Fruit", y="Amount", color="City", barmode="group")
# Data for the tip-graph
df_tip = px.data.tips()
app.layout = html.Div(children=[
# All elements from the top of the page
html.Div([
html.H1(children='Hello Dash'),
html.Div(children='''
Dash: A web application framework for Python.
'''),
dcc.Graph(
id='example-graph',
figure=fig
),
]),
# New Div for all elements in the new 'row' of the page
html.Div([
dcc.Graph(id='tip-graph'),
html.Label([
"colorscale",
dcc.Dropdown(
id='colorscale-dropdown', clearable=False,
value='bluyl', options=[
{'label': c, 'value': c}
for c in px.colors.named_colorscales()
])
]),
])
])
# Callback function that automatically updates the tip-graph based on chosen colorscale
@app.callback(
Output('tip-graph', 'figure'),
[Input("colorscale-dropdown", "value")]
)
def update_tip_figure(colorscale):
return px.scatter(
df_color, x="total_bill", y="tip", color="size",
color_continuous_scale=colorscale,
render_mode="webgl", title="Tips"
)
if __name__ == '__main__':
app.run_server(debug=True)
Votre prochaine question peut être, comment puis-je placer plusieurs chiffres côte à côte ? C'est là que CSS et les feuilles de style sont importantes.
Vous avez déjà ajouté une feuille de style externe https://codepen.io/chriddyp/pen/bWLwgP.css
, qui nous permet de mieux structurer notre mise en page en utilisant le className
composant de divs.
La largeur d'une page web est fixée à 12 colonnes quelle que soit la taille de l'écran. Donc, si nous voulons avoir deux chiffres côte à côte, chacun occupant 50% de l'écran, ils doivent remplir 6 colonnes chacun.
Nous pouvons y parvenir en imbriquant un autre html.Div
comme demi-rangée supérieure. Dans cette div supérieure, nous pouvons avoir deux autres divs dans lesquelles nous spécifions le style en fonction de classname six columns
. Cela divise la première rangée en deux moitiés
import dash
import dash_core_components as dcc
import dash_html_components as html
from dash.dependencies import Input, Output
import pandas as pd
import plotly.express as px
from jupyter_dash import JupyterDash
external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css']
app = dash.Dash(__name__, external_stylesheets=external_stylesheets)
# assume you have a "long-form" data frame
# see https://plotly.com/python/px-arguments/ for more options
df_bar = pd.DataFrame({
"Fruit": ["Apples", "Oranges", "Bananas", "Apples", "Oranges", "Bananas"],
"Amount": [4, 1, 2, 2, 4, 5],
"City": ["SF", "SF", "SF", "Montreal", "Montreal", "Montreal"]
})
fig = px.bar(df_bar, x="Fruit", y="Amount", color="City", barmode="group")
app.layout = html.Div(children=[
# All elements from the top of the page
html.Div([
html.Div([
html.H1(children='Hello Dash'),
html.Div(children='''
Dash: A web application framework for Python.
'''),
dcc.Graph(
id='graph1',
figure=fig
),
], className='six columns'),
html.Div([
html.H1(children='Hello Dash'),
html.Div(children='''
Dash: A web application framework for Python.
'''),
dcc.Graph(
id='graph2',
figure=fig
),
], className='six columns'),
], className='row'),
# New Div for all elements in the new 'row' of the page
html.Div([
html.H1(children='Hello Dash'),
html.Div(children='''
Dash: A web application framework for Python.
'''),
dcc.Graph(
id='graph3',
figure=fig
),
], className='row'),
])
if __name__ == '__main__':
app.run_server(debug=True)