Oscillateur harmonique quantique, énergie du point zéro et nombre quantique n

Jan 09 2021

L'énergie d'un oscillateur harmonique quantique est donnée comme suit:

\ begin {équation} E_ {qho} = \ gauche (n + \ frac {1} {2} \ droite) \ hbar \ omega, \; \; \; \; \; \; n = 0,1,2,3, ... \ tag {1} \ end {équation}

Je comprends les implications du principe d'incertitude de Heisenberg qui ne permet pas aux atomes d'être à l'arrêt, même à $0$ K. Cette incertitude est la raison d'une certaine énergie possédée par les atomes à $0$K - l' énergie du point zéro (ZPE). La plupart des textes présentent ZPE en indiquant comment avec$n = 0$ il y a encore une énergie résiduelle égale à $\frac{1}{2}\hbar\omega$.

Est $n$seulement un nombre? Si oui, comment$n = 0$ quelque chose à voir avec la température?

Réponses

10 lepmueller Jan 09 2021 at 02:00

L'énergie du point zéro n'a pas d'importance ici, puisque vous pouvez toujours choisir librement votre énergie de référence, vous pouvez déplacer l'énergie de votre hamiltonien de $\frac{1}{2}\hbar\omega$ $$ H = \frac{p^2}{2m}+\frac{1}{2}m\omega^2x^2-\frac{1}{2}\hbar\omega, $$et la physique du système restera la même (la fonction d'onde sera la même). Puisque cette fonction d'onde n'est pas une fonction delta située à zéro (comme c'est le cas en mécanique classique) mais plutôt plus étalée, vous pouvez l'interpréter comme, par exemple, vos atomes vibrent toujours dans cet état propre de l'hamiltonien.

Concernant votre question: Oui, $n$est juste un nombre destiné à étiqueter les états propres d'énergie du plus bas au plus élevé. La température ne joue qu'indirectement. Pour définir une température, il faut définir un ensemble thermique (il faut plus d'une particule pour le faire correctement) avec une matrice de densité associée$\rho$. Un choix commun pour cela est donné par$$ \rho = \frac{1}{z}\sum_{i=1}^{\infty}|i\rangle e^{-E_{i}/kT} \langle i|, z = \sum_{i=1}^{\infty}e^{-E_i/kT} $$$|i\rangle$ désignent les états propres d'énergie et $E_i$ les valeurs propres d'énergie correspondantes (dans ce cas pour l'oscillateur harmonique). $T$ est la température, $k$juste une constante. Vous pouvez interpréter (de la même manière qu'un coefficient d'expansion de la fonction d'onde) que le facteur$e^{-E_{i}/kT}/z$ est une probabilité d'être dans l'état $|i\rangle$. Tu peux voir ça quand$T\rightarrow 0$, seul le coefficient avec la valeur propre d'énergie la plus faible restera (tout coefficient avec une valeur propre $E_i$-value disparaîtra plus rapidement). De ceci peut être déduit que pour un système général (pas seulement votre exemple d'oscillateur harmonique) le système sera dans l'état d'énergie la plus basse lorsque$T\rightarrow 0$ (tant que vous disposez d'un ensemble thermique).

6 TristanMaxson Jan 09 2021 at 01:51

Le nombre quantique n représente simplement les différents niveaux d'énergie donnés par l'oscillateur harmonique.

$\mathbf{n=0}$ne correspond pas à une température donnée, mais son occupation relative à d'autres niveaux d'énergie correspond à une température donnée. Lorsqu'un système monte en température, les niveaux d'énergie les plus élevés peuvent être occupés en plus grand nombre. De même, à 0 K, il est nécessaire que seul le niveau d'énergie le plus bas soit occupé.

5 NikeDattani Jan 09 2021 at 02:56

Est $n$ seulement un nombre?

$n$est en effet un nombre. Est-ce seulement un nombre? Eh bien, c'est un nombre quantique, ce qui signifie qu'il étiquette le$n^{\textrm{th}}$ niveau d'énergie excité du système (c.-à-d. $(n+1)^{\textrm{th}}$ plus petite valeur propre de l'hamiltonien du système, avec $n=0$correspondant à la plus petite valeur propre,$n=1$correspondant à la deuxième plus petite valeur propre, etc.

Si tel est le cas, comment $n = 0$ avez quelque chose à voir avec la température?

La matrice de densité d'un système avec le potentiel d'oscillateur harmonique est souvent donnée en termes de hamiltonien $H$ par:

\ begin {équation} \ rho = \ frac {e ^ {- \ beta H}} {\ textrm {tr} \ left (e ^ {- \ beta H} \ right)}, ~~~~~~~~ \ beta \ equiv \ frac {1} {k_BT}. \ tag {1} \ label {eq: boltzmann} \ end {équation}

Les diagonales de la matrice de densité de haut à gauche en bas à droite vous indiquent alors la probabilité de trouver le système en $n=0,1,2,\ldots$, ce qui signifie que si l'élément supérieur gauche de la matrice de densité est $p$, la probabilité que le système se trouve au niveau d'énergie correspondant à $n=0$ est $p$. Lorsque$T=0$ nous avons que la probabilité que le système soit dans n'importe quel état excité ($n>0$) est extrêmement supprimée par l'exponentielle décroissante, et vous pouvez compter sur trouver le système au $n=0$niveau. Lorsque$T$est plus grand, les états excités seront plus susceptibles d'être peuplés. Comme$T$ approches $+\infty$, l'exponentielle devient proche de 1 et on aborde un scénario où les probabilités deviennent égales pour chaque état $n$.

Eq. 1 dans cette réponse est également:

  • Eq. 1 dans cette réponse: Conversion de l'énergie de liaison d'adsorption en température absolue
  • Eq. 3 dans cette réponse: Puis-je calculer la différence d'énergie libre dans des micro-états proches (temporellement) en utilisant l'équation de Zwanzig pour la perturbation d'énergie libre?
  • Eq. 2 dans cette réponse: oscillateur harmonique quantique, énergie du point zéro et nombre quantique n
5 Jack Jan 09 2021 at 09:23

Est $𝑛$ seulement un nombre?

En bref, $n$ est le nombre quantique d'énergie de l'oscillateur harmonique quantique.

Si tel est le cas, comment $𝑛$=$0$ avez quelque chose à voir avec la température?

En particulier, $n$=$0$signifie que l'oscillateur harmonique restera à son état fondamental. Habituellement, on suppose que l'état fondamental d'un système quantique est vécu à une température nulle. Par conséquent, vous pouvez trouver une connexion entre$n=0$ et le point zéro.

  • Voici un article pour parler de la relation entre la température zéro et l'état fondamental.

    • https://physics.stackexchange.com/questions/294593/whats-the-relation-between-zero-temperature-and-ground-state-of-interacting-man
  • Voici un article pour parler de la taille pour parler d'équilibre thermique (c'est important pour définir la température):

    • https://physics.stackexchange.com/questions/311357/whats-the-size-to-talk-about-thermal-equilibrium

Que cela aide.

4 SusiLehtola Jan 10 2021 at 04:22

Comme cela a déjà été indiqué dans plusieurs autres réponses, $n$ est seulement un nombre, et la population des États avec des $n$ dépend de la température.

Cependant, un point important n'a pas encore été évoqué. L'oscillateur harmonique quantique est souvent invoqué pour le mouvement nucléaire. Il découle de l'expansion de Taylor de second ordre de la surface d'énergie potentielle nucléaire de Born-Oppenheimer$V({\bf R}) = V({\bf R}_0) + \nabla V|_{{\bf R}={\bf R}_0} \cdot({\bf R}-{\bf R}_0)+\frac 1 2 ({\bf R}-{\bf R}_0)\cdot \nabla\nabla V|_{{\bf R}={\bf R}_0}\cdot ({\bf R}-{\bf R}_0) + \mathcal{O}(|{{\bf R}-{\bf R}_0}|^3)$

où le terme du premier ordre disparaît depuis $\nabla V|_{{\bf R}={\bf R}_0} ={\bf 0}$ au minimum.

Puisque l'étendue spatiale des états augmente avec $n$, l'importance des effets anharmoniques croît également avec $n$, ou avec une température croissante.