résoudre, la limite suivante

Aug 15 2020

Donc, voici la question posée:

Je pourrais le résoudre partiellement, voici ma démarche : La limite est de la forme$(A+B)/C$$A$et$B$les deux approchent$e^3$tandis que$C$approches$0$,

Cela peut être découvert en évaluant simplement$A$et$B$séparément.

Maintenant, nous pouvons écrire la limite comme$$ \lim_{t \to 0} [(1+3t+2t^2)^{1/t} - e^3]/t -\lim_{t \to 0} [(1+3t-2t^2)^{1/t} - e^3]/t $$

mais je n'ai pas pu évaluer ces deux limites au moins en utilisant la règle LH car la dérivée du numérateur est une expression assez longue. Veuillez suggérer un moyen de résoudre cette question, toute aide est grandement appréciée.

Réponses

2 enzotib Aug 15 2020 at 19:19

\begin{align} &\lim_{t\to0}\frac{1}{t}\left[(1+3t+2t^2)^{1/t}-(1+3t+2t^2)^{1/t}\right]=\\ &\qquad=\lim_{t\to0}\frac{1}{t}\left[(1+3t+2t^2)^{\frac{1}{3t+2t^2}\frac{3t+2t^2}{t}}-(1+3t-2t^2)^{\frac{1}{3t-2t^2}\frac{3t-2t^2}{t}}\right]=\\ &\qquad=\lim_{t\to0}\frac{1}{t}\left[e^{\frac{3t+2t^2}{t}}-e^{\frac{3t-2t^2}{t}}\right]=\\ &\qquad=e^3\lim_{t\to0}\frac{1}{t}\left[e^{2t}-e^{-2t}\right]=\\ &\qquad=2e^3\lim_{t\to0}\left[\frac{e^{2t}-1}{2t}+\frac{e^{-2t}-1}{-2t}\right]=4e^3 \end{align}

2 ClaudeLeibovici Aug 15 2020 at 21:25

$$A=(1+3t+2t^2)^{\frac 1 t}\implies \log(A)=\frac 1 t \log(1+3t+2t^2)$$ $$ \log(1+3t+2t^2)=3 t-\frac{5 t^2}{2}+3 t^3-\frac{17 t^4}{4}+O\left(t^5\right)$$ $$ \log(A)=3-\frac{5 t}{2}+3 t^2-\frac{17 t^3}{4}+O\left(t^4\right)$$ $$A=e^{\log(A)}=e^3\left(1-\frac{5 t}{2}+\frac{49 t^2}{8}-\frac{689 t^3}{48}\right)+O\left(t^4\right) $$

$$B=(1+3t-2t^2)^{\frac 1 t}\implies \log(B)=\frac 1 t \log(1+3t-2t^2)$$ $$ \log(1+3t-2t^2)=3 t-\frac{13 t^2}{2}+15 t^3-\frac{161 t^4}{4}+O\left(t^5\right)$$ $$ \log(B)=3-\frac{13 t}{2}+15 t^2-\frac{161 t^3}{4}+O\left(t^4\right)$$ $$B=e^{\log(B)}=e^3\left(1-\frac{13 t}{2}+\frac{289 t^2}{8}-\frac{8809 t^3}{48} \right)+O\left(t^4\right) $$ $$A-B=4 e^3 t-30 e^3 t^2+\frac{1015 e^3 t^3}{6}+O\left(t^4\right)$$ $$\frac{A-B}t=4 e^3 -30 e^3 t+\frac{1015 e^3 t^2}{6}+O\left(t^3\right)$$montre la limite et comment elle est approchée.

1 PeterForeman Aug 15 2020 at 19:11

En utilisant le théorème de Taylor sur le logarithme naturel et l'exponentielle, nous avons que\begin{align} (1+3t+2t^2)^{1/t} &=\exp{\left(\frac{\ln{(1+3t+2t^2)}}t\right)}\\ &=\exp{\left(\frac{(3t+2t^2)-(3t+2t^2)^2/2+o(t^2)}t\right)}\\ &=\exp{\left(3-\frac52t+o(t)\right)}\\ &=e^3\exp{\left(-\frac52t+o(t)\right)}\\ &=e^3\left(1-\frac52t+o(t)\right) \end{align}et de même nous avons$$(1+3t-2t^2)^{1/t}=e^3\left(1-\frac{13}2t+o(t)\right)$$Donc ta limite est juste\begin{align} \lim_{t\to0}\frac{e^3\left(1-\frac52t+o(t)\right)-e^3\left(1-\frac{13}2t+o(t)\right)}t &=\lim_{t\to0}\frac{4e^3t+o(t)}t\\ &=\lim_{t\to0}(4e^3+o(1))\\ &=\boxed{4e^3}\\ \end{align}