Trouver la trace d'un système explicitement

Nov 29 2020

Considérez que nous travaillons avec un système commun composé du système A avec base $|\alpha_j\rangle$ et système B avec base $|\beta_j\rangle$.

Dans mes notes, l'opérateur de densité est noté comme suit:

$$\space\space\rho = \sum_{j,k,l,m} \langle\alpha_j| \langle\beta_k |\rho |\alpha_l\rangle |\beta_m\rangle |\alpha_j\rangle |\beta_k\rangle \langle\alpha_l| \langle \beta_m|$$

où mes notes indiquent que $$ \rho_{jklm} = \langle\alpha_j| \langle\beta_k |\rho |\alpha_l\rangle |\beta_m\rangle $$

Ils énoncent également les équations suivantes pour la trace de A et la trace de B: $$\rho_\beta = Tr_\alpha(\rho) = \sum_{l,m}(\sum_{j} \rho_{j,l,j,m}) |\beta_l\rangle \langle\beta_m| $$

$$\rho_\alpha = Tr_\beta(\rho) = \sum_{j,k}(\sum_{l} \rho_{j,l,k,l}) |\alpha_j\rangle \langle\alpha_k| $$

Ma principale question est de savoir comment écrire $\rho_{j,l,k,l}$ et $\rho_{j,l,j,m}$ explicitement car ce que j'obtiens ne semble pas être d'accord avec un exemple travaillé dans mon livre et je suis donc assez confus.

Merci

Réponses

2 J.Murray Nov 29 2020 at 22:46

Eh bien parce que si je devais le faire moi-même, je l'écrirais comme suit: $\rho_{jlkl} =\langle \alpha_j|\langle \beta_l| \rho |\alpha_k\rangle |\beta_l\rangle $ Cependant, je ne suis pas sûr car les exemples travaillés que j'ai vus suggèrent ce qui suit $\rho_{jlkl} =\langle \alpha_j|\langle \beta_l| \rho |\beta_l\rangle |\alpha_k\rangle $.

Il semble que vous ne comprenez pas bien l'idée d'un produit tensoriel d'états, je vais donc l'examiner brièvement. Laisser$\mathcal H_A$ et $\mathcal H_B$ être des espaces de Hilbert, et laissez $\alpha \in \mathcal H_A$ et $\beta \in \mathcal H_B$. Le produit tenseur de$\alpha$ et $\beta$ est la paire ordonnée $(\alpha,\beta)$ qui a les propriétés suivantes:

  • $(\alpha,\beta+\gamma)=(\alpha,\beta)+(\alpha,\gamma)$ pour tous $\alpha\in\mathcal H_A, \beta,\gamma \in \mathcal H_B$
  • $(\alpha+\delta,\beta)=(\alpha,\beta)+(\delta,\beta)$ pour tous $\alpha,\delta \in \mathcal H_A, \beta \in \mathcal H_B$
  • $\lambda (\alpha,\beta) = (\lambda \alpha,\beta) = (\alpha,\lambda \beta)$ pour tous $\lambda \in \mathbb C, \alpha\in\mathcal H_A, \beta \in \mathcal H_B$

Plutôt que d'écrire $(\alpha,\beta)$ pour le produit tensoriel, c'est la notation standard d'écrire $\alpha \otimes \beta$.


Le produit tenseur des espaces de Hilbert $\mathcal H_A$ et $\mathcal H_B$ est l'espace de tous les produits tensoriels de la forme $\alpha\otimes \beta$ avec $\alpha\in\mathcal H_A$ et $\beta \in \mathcal H_B$, et toutes leurs combinaisons linéaires . Le produit intérieur de cet espace est considéré comme

$$\bigg< (\alpha,\beta), (\gamma,\delta)\bigg>_{\mathcal H_A\otimes \mathcal H_B} := \left<\alpha,\gamma\right>_{\mathcal H_A} \cdot \left<\mathcal \beta ,\mathcal \delta\right>_{\mathcal H_B}$$

Par conséquent, un élément $\psi \in \mathcal H_A \otimes \mathcal H_B$ pourrait ressembler à

$$\psi= \alpha\otimes \beta + 3\gamma \otimes \delta$$

Il ressort clairement de la définition que $\alpha$ et $\gamma$ appartenir à $\mathcal H_A$ tandis que $\beta$ et $\delta$ appartenir à $\mathcal H_B$. Encore une fois par convention standard, nous réutilisons le symbole$\otimes$ et dénotons le produit tensoriel des espaces de Hilbert par $\mathcal H_A \otimes \mathcal H_B$.


Si vous souhaitez travailler avec la notation Dirac, vous pouvez écrire quelque chose comme $|\psi\rangle = |\alpha\rangle \otimes |\beta \rangle$. Le soutien-gorge correspondant serait$\langle \psi| = \langle \alpha| \otimes \langle \beta |$. Si nous laissons$|\phi\rangle = |\gamma\rangle \otimes |\delta \rangle$, puis

$$\langle \psi|\phi\rangle = \bigg(\langle \alpha| \otimes \langle \beta|\bigg) \bigg( |\gamma \rangle \otimes |\delta \rangle\bigg) = \langle \alpha|\gamma\rangle \cdot \langle \beta|\delta\rangle$$

La convention est que, que vous parliez d'un soutien-gorge ou d'un ket, la première quantité du produit tensoriel appartient à $\mathcal H_A$ (ou son double espace) et le second appartient à $\mathcal H_B$ (ou son double espace).


Avec tout cela étant dit, votre expression

$$\rho_{j,l,k,l} = \langle\alpha_j| \langle\beta_l |\rho |\beta_l\rangle |\alpha_k\rangle$$

Cela n'a pas de sens pour moi, car le produit tensoriel ket à droite est dans le mauvais ordre.

1 glS Nov 30 2020 at 17:41

Tout d'abord, il convient de noter que la façon dont vous comprenez $\rho_{ijk\ell}$est avant tout une question de convention. Cela dit, certaines conventions sont certainement plus «naturelles» que d'autres.

Une façon d'y penser est que les composants matriciels de $\rho$ dans un espace composite $\mathcal H\equiv \mathcal X\otimes\mathcal Y$ne sont rien d'autre que cela: des composants de matrice dans un certain espace. Si vous utilisez les indices$I,J$ étiqueter les éléments d'une base de $\mathcal H$, vous pouvez écrire les composants de la matrice comme $$\rho_{I,J}\equiv \langle I|\rho|J\rangle, \qquad |I\rangle,|J\rangle\in\mathcal H.$$ Cependant, cette notation ne prend pas en compte la structure bipartite de $\mathcal H$. Pour ce faire, nous observons que nous pouvons toujours trouver une base de$\mathcal H$ qui est construit à partir de bases de $\mathcal X$ et $\mathcal Y$. On peut ainsi étiqueter les éléments de base de$\mathcal H$en utilisant deux indices, désignant les éléments de base correspondants de$\mathcal X$ et $\mathcal Y$. En d'autres termes, nous pouvons écrire$$\mathcal H = \mathrm{span}(\{|i,j\rangle\equiv|i\rangle\otimes|j\rangle : \quad |i\rangle\in\mathcal X, \,\,|j\rangle\in\mathcal Y\}).$$ Ensuite, au lieu d'un index $I$, nous utilisons une paire d'indices, disons $(i,j)$. Les éléments matriciels de$\rho$ alors deviens $$\rho_{(i,j),(k,\ell)} \equiv \langle i,j|\rho|k,\ell\rangle \equiv (\langle i|\otimes\langle j|)\rho(|k\rangle\otimes |\ell\rangle),$$où j'inclus différentes manières équivalentes d'écrire l'expression. Notez que j'ai écrit les indices "input" et "output" de$\rho$ en utilisant des paires $(i,j)$ et $(k,\ell)$ici, pour souligner les différents rôles des indices. Par souci de concision, on ne fait généralement pas cela, et on écrit simplement$\rho_{ijk\ell}$ vouloir dire $\rho_{(i,j),(k,\ell)}$.

Désormais, vous pouvez également décider d'utiliser $\rho_{ijk\ell}$ pour signifier quelque chose comme $\langle \ell,j|\rho|k,i\rangle$. Ce serait cependant une notation assez délicate.