Головоломка Gizmodo Monday: как решить дьявольский хет-трик

Jul 01 2024
Плюс несколько важных новостей из вашей любимой головоломки.

Каждую неделю было настоящим удовольствием растапливать себе мозги, но сегодняшнее решение станет последней частью головоломки Gizmodo Monday . Спасибо всем, кто комментировал, писал по электронной почте или молчал. Поскольку я не могу оставить вас без решения, взгляните на несколько головоломок, которые я недавно придумал для информационного бюллетеня Morning Brew:

  • Необычный мини-кроссворд. 
  • Полноразмерный кроссворд на непростую тему. 
  • Новая головоломка для взлома кода под названием Decipher

Я также пишу серию статей о математических диковинках для Scientific American, где беру свои любимые умопомрачительные идеи и истории из математики и представляю их нематематической аудитории. Если вам понравилась какая-либо из моих преамбул, я обещаю вам много интриг.

Оставайтесь на связи со мной на X @JackPMurtagh, поскольку я продолжаю пытаться заставить Интернет почесать голову.

Рекомендуемое чтение

Министерство юстиции предъявит Boeing уголовное обвинение в нарушении мирового соглашения по 737 Max: отчеты
По слухам, Apple работает над AirPods со встроенными камерами
Наш лучший взгляд на суперзлодея Дэдпула и Росомахи и знакомого друга

Рекомендуемое чтение

Министерство юстиции предъявит Boeing уголовное обвинение в нарушении мирового соглашения по 737 Max: отчеты
По слухам, Apple работает над AirPods со встроенными камерами
Наш лучший взгляд на суперзлодея Дэдпула и Росомахи и знакомого друга
Семья Флориды подала в суд на НАСА из-за дома, поврежденного космическим мусором
Делиться
Субтитры
  • Выключенный
  • Английский
Поделитесь этим видео
Фейсбук Твиттер Электронная почта
Ссылка на Реддит
Семья Флориды подала в суд на НАСА из-за дома, поврежденного космическим мусором

Связанный контент

Головоломка Gizmodo Monday: 83% людей ответили хотя бы на один вопрос неправильно в этом психологическом тесте
Головоломка Gizmodo Monday: сможете ли вы решить эту невероятно сложную логическую головоломку?

Спасибо за удовольствие,
Джек


Решение головоломки № 48: хет-трик

Вы пережили антиутопические кошмары прошлой недели ? Выражаем благодарность bbe за решение первой головоломки и Гэри Абрамсону за впечатляюще лаконичное решение второй головоломки.

Связанный контент

Головоломка Gizmodo Monday: 83% людей ответили хотя бы на один вопрос неправильно в этом психологическом тесте
Головоломка Gizmodo Monday: сможете ли вы решить эту невероятно сложную логическую головоломку?

1. В первой головоломке группа может гарантировать, что выживут все, кроме одного. Человек сзади не имеет информации о цвете своей шляпы. Поэтому вместо этого они будут использовать свое единственное предположение, чтобы сообщить достаточно информации, чтобы оставшиеся девять человек могли наверняка определить цвет своей шляпы.

Человек сзади подсчитывает количество красных шляп, которые он видит. Если это нечетное число, они будут кричать «красный», а если четное, они будут кричать «синий». А как следующий человек в очереди сможет определить цвет своей шляпы? Они видят восемь шляп. Предположим, они считают перед собой нечетное количество красных; они знают, что человек позади них видел четное количество красных (потому что этот человек кричал «синий»). Этой информации достаточно, чтобы сделать вывод, что их шляпа должна быть красной, чтобы общее количество красных было четным. Следующий участник также знает, видел ли человек, стоящий за ним, четное или нечетное количество красных шляп, и может сделать такие же выводы для себя.

2. Для второй головоломки мы представим стратегию, которая гарантирует выживание всей группы, если только все 10 шляп не окажутся красными. Группе нужно, чтобы только один человек угадал правильно, и одно неправильное предположение автоматически убивает их всех, поэтому, как только один человек угадает цвет (откажется пройти), тогда каждый последующий человек пройдет. Цель состоит в том, чтобы синяя шляпа, ближайшая к началу линии, угадала «синий», а все остальные прошли. Для этого все пройдут, если только они не увидят перед собой красные шляпы (или если кто-то позади них уже догадался).

Чтобы понять, почему это работает, обратите внимание, что человек в конце очереди пройдет мимо, если не увидит девять красных шляп, и в этом случае он угадает синюю. Если они говорят «синий», то все остальные проходят, и группа побеждает, если только все десять шляп не окажутся красными. Если человек сзади проходит, значит, он увидел впереди какую-то синюю шляпу. Если предпоследний человек видит перед собой восемь красных, он знает, что это, должно быть, синяя шляпа, и поэтому угадывает синий цвет. В противном случае они проходят. Все будут проходить до тех пор, пока какой-нибудь человек в начале очереди не увидит перед собой только красные шляпы (или отсутствие шляп в случае, если они находятся в начале очереди). Первый человек в этой ситуации угадывает синий цвет.

Вероятность того, что все 10 шляп красные, равна 1/1024, поэтому группа выигрывает с вероятностью 1023/1024.