นิพจน์สำหรับความโค้งภายนอก
ในหนังสือ Gravitation Foundations and Frontiers ของ Padmanabhan สมการต่อไปนี้สามารถเกี่ยวกับความโค้งภายนอกของไฮเปอร์พื้นผิวได้ในส่วนที่ 12.2 (ดูสมการ 12.19 ข้างบนในหนังสือเล่มนั้น)
\begin{align} K_{\alpha\beta}=-\nabla_\alpha n_\beta=-N\Gamma^0_{\alpha\beta}. \end{align}
ตามอนุสัญญากรีกดัชนีเรียกใช้สำหรับพิกัดเชิงพื้นที่ ($\alpha=1,2,3$) และดัชนีละตินทำงานสำหรับพิกัดอวกาศ - เวลา ($a=0,1,2,3$). ดังนั้นสมการข้างต้นจึงแสดงให้เห็นถึงส่วนประกอบเชิงพื้นที่ของความโค้งภายนอก$K_{\alpha\beta}$. ที่นี่$n^a$ เป็นฟิลด์เวกเตอร์ปกติสำหรับพื้นผิวเหนือพื้นผิวและ $N$คือฟังก์ชันการหมดอายุ ตอนนี้หนังสืออ้างว่าถ้าเราขยายสัญลักษณ์ Christoffel เราจะได้นิพจน์ต่อไปนี้ (ดูสมการ 12.19 ในหนังสือ)
$$K_{\alpha\beta}=\frac{1}{2N}\left(D_\alpha N_{\beta}+D_\beta N_{\alpha}-\partial_0 h_{\alpha\beta}\right)$$
ที่นี่ $N^\alpha$ คือกะเวกเตอร์ $h_{\alpha\beta}$ เป็นเมตริกเชิงพื้นที่ที่เกิดขึ้นบนพื้นผิวเหนือพื้นผิวและ $D_m$ เป็นอนุพันธ์ของโควาเรียที่อยู่ภายในบนพื้นผิวเหนือพื้นผิวที่มีการกระทำกับเวกเตอร์เชิงพื้นที่ล้วนๆ $X_s$ซึ่งเป็นไปตามข้อ จำกัด เช่น $X_sn^s=0$กำหนดเป็น
$$D_mX_s=h^a_mh^b_s\nabla_aX_b,$$
ที่ไหน $h^a_b=\delta^a_b+n^an_b$ คือเทนเซอร์ฉายภาพบนพื้นผิวเหนือพื้นผิวและ $\nabla_a$ เป็นอนุพันธ์ของโควาเรียตามปกติสำหรับกาลอวกาศ
ฉันไม่สามารถหาสมการ 12.19 ที่ให้นิพจน์สำหรับ $K_{\alpha\beta}$. ด้านล่างฉันแสดงวิธีที่ฉันพยายามทำ สัญลักษณ์ Christoffel สามารถขยายได้เป็น\begin{align} \Gamma^0_{\alpha\beta}&=\frac{1}{2}g^{0a}\left(\partial_\alpha g_{\beta a}+\partial_\beta g_{\alpha a}-\partial_a g_{\alpha\beta}\right)\nonumber\\ &=\frac{1}{2}g^{00}\left(\partial_\alpha g_{\beta 0}+\partial_\beta g_{\alpha 0}-\partial_0 g_{\alpha\beta}\right)+\frac{1}{2}g^{0\gamma}\left(\partial_\alpha g_{\beta \gamma}+\partial_\beta g_{\alpha \gamma}-\partial_\gamma g_{\alpha\beta}\right)\nonumber\\ &=\frac{-1}{2}N^{-2}\left(\partial_\alpha N_{\beta}+\partial_\beta N_{\alpha}-\partial_0 h_{\alpha\beta}\right)+\frac{1}{2}N^{-2}N^{\gamma}\left(\partial_\alpha h_{\beta \gamma}+\partial_\beta h_{\alpha \gamma}-\partial_\gamma h_{\alpha\beta}\right)\nonumber\\ &=\frac{-1}{2}N^{-2}\left(D_\alpha N_{\beta}+D_\beta N_{\alpha}+2\Gamma^\gamma_{\alpha\beta}N_{\gamma}-\partial_0 h_{\alpha\beta}\right)+\frac{1}{2}N^{-2}N^{\gamma}\left(\partial_\alpha h_{\beta \gamma}+\partial_\beta h_{\alpha \gamma}-\partial_\gamma h_{\alpha\beta}\right)\nonumber\\ &=\frac{-1}{2}N^{-2}\left(D_\alpha N_{\beta}+D_\beta N_{\alpha}-\partial_0 h_{\alpha\beta}\right)-N^{-2}\Gamma^\gamma_{\alpha\beta}N_{\gamma}+\frac{1}{2}N^{-2}N^{\gamma}\left(\partial_\alpha h_{\beta \gamma}+\partial_\beta h_{\alpha \gamma}-\partial_\gamma h_{\alpha\beta}\right) \end{align} ในข้างต้นฉันได้ใช้ข้อเท็จจริงที่ว่า $$n_0=-N,\quad n_\alpha=0,$$ $$D_\alpha N_\beta=h^a_\alpha h^b_\beta\nabla_a N_b=\partial_\alpha N_\beta-\Gamma^\gamma_{\alpha\beta}N_\gamma,$$ $$h_{00}=N^\gamma N_\gamma,\quad h_{0\alpha}=N_\alpha,\quad h_{\alpha\beta}=g_{\alpha\beta}$$
คำตอบ
การคำนวณของ OP ดูเหมือนจะดี หากเราดำเนินการตามบรรทัดนั้นการแสดงออกที่ต้องการสามารถทำได้ค่อนข้างง่าย ก่อนอื่นฉันทราบว่า$$D_\alpha N_\beta=\partial_\alpha N_\beta-{}^{(3)}\Gamma^\gamma_{\alpha\beta}N_\gamma\neq \partial_\alpha N_\beta-{}^{(4)}\Gamma^\gamma_{\alpha\beta}N_\gamma=\partial_\alpha N_\beta-\Gamma^\gamma_{\alpha\beta}N_\gamma,$$บางทีการทดแทนนี้อาจทำให้เกิดความสับสนในการคำนวณของ OP ถ้าเราแก้ไขแล้วมันก็เป็นไปตามนั้น\begin{align} &\frac{1}{2}g^{0a}\left(\partial_\alpha g_{\beta a}+\partial_\beta g_{\alpha a}-\partial_a g_{\alpha\beta}\right)\nonumber\\ &=-\frac{1}{2}N^{-2}\left(D_\alpha N_{\beta}+D_\beta N_{\alpha}+2{}^{(3)}\Gamma^\gamma_{\alpha\beta}N_{\gamma}-\partial_0 h_{\alpha\beta}\right)+\frac{1}{2}N^{-2}N^{\gamma}\left(\partial_\alpha h_{\beta \gamma}+\partial_\beta h_{\alpha \gamma}-\partial_\gamma h_{\alpha\beta}\right)\nonumber\\ &=-\frac{1}{2}N^{-2}\left(D_\alpha N_{\beta}+D_\beta N_{\alpha}-\partial_0 h_{\alpha\beta}\right)-N^{-2}{}^{(3)}\Gamma^\gamma_{\alpha\beta}N_{\gamma}+\frac{1}{2}N^{-2}N^{\gamma}\left(\partial_\alpha h_{\beta \gamma}+\partial_\beta h_{\alpha \gamma}-\partial_\gamma h_{\alpha\beta}\right)\nonumber\\ &=-\frac{1}{2}N^{-2}\left(D_\alpha N_{\beta}+D_\beta N_{\alpha}-\partial_0 h_{\alpha\beta}\right)-N^{-2}{}^{(3)}\Gamma^\gamma_{\alpha\beta}N_{\gamma}\nonumber\\ &\qquad+\frac{1}{2}N^{-2}N_{\sigma}h^{\gamma\sigma}\left(\partial_\alpha h_{\beta \gamma}+\partial_\beta h_{\alpha \gamma}-\partial_\gamma h_{\alpha\beta}\right)\nonumber\\ &=-\frac{1}{2}N^{-2}\left(D_\alpha N_{\beta}+D_\beta N_{\alpha}-\partial_0 h_{\alpha\beta}\right)-N^{-2}{}^{(3)}\Gamma^\gamma_{\alpha\beta}N_{\gamma}+N^{-2}N_{\sigma}{}^{(3)}\Gamma^{\sigma}_{\alpha\beta}\nonumber\\ &=-\frac{1}{2}N^{-2}\left(D_\alpha N_{\beta}+D_\beta N_{\alpha}-\partial_0 h_{\alpha\beta}\right) \end{align} ดังนั้น, $$K_{\alpha\beta}=-N\Gamma^0_{\alpha\beta}=\frac{1}{2N}\left[D_\alpha N_{\beta}+D_\beta N_{\alpha}-\partial_0 h_{\alpha\beta}\right].$$
- ความโค้งภายนอกถูกกำหนดไว้ในกาลอวกาศโดยรอบ (แทนที่จะเป็นบนพื้นผิวเหนือพื้นผิว) เป็น $n_a$: $$K_{ab} = -P_\perp{}^c{}_{a}P_\perp{}^d{}_b \nabla_c n_d,$$ ด้วย $P_\perp$เทนเซอร์ฉายบนผิวหน้า สังเกตว่าด้วยการสร้างความโค้งภายนอกเป็นเชิงพื้นที่และสมมาตรในดัชนีสองตัว
- ใช้สมมาตรในการเขียน $K_{ab}$ เป็นอนุพันธ์ของโกหก:$$K_{ab} ={-\scriptsize\frac{1}{2}} P_\perp{}^c{}_{a}P_\perp{}^d{}_b \mathcal{L}_n \,g_{cd}.$$
- ใช้การสลายตัวแบบมุมฉากของเมตริกและระบบพิกัดที่ปรับแล้ว $t^a = Nn^a + N^a$ สำหรับฟังก์ชันล่วงเลยและกะเวกเตอร์ที่จะมาถึง $$K_{ab} = {\scriptsize\frac{1}{2}}N^{-1}\mathcal{L}_{(N-t)}h_{ab}.$$
อ้างอิง:
- T. Thiemann, Introduction to Modern Canonical Quantum General Relativity , subsection I.1.1