Comment dessiner un mappage conforme du plan z au plan w
Je suis totalement débutant en Mathematica. Je ne sais rien. J'ai besoin de dessiner des diagrammes pour montrer la nature conforme de la carte$w=e^z$.
J'ai besoin de dessiner des contours $z$-avion; par exemple, ligne horizontale, ligne verticale, ligne à 45 degrés et cercle unitaire. Ensuite, j'ai besoin d'obtenir les courbes mappées dans$w$-avion où $u$ et $v$ sont des fonctions de $x$ et $y$.
Je n'ai aucune idée comment faire ça? Aidez-moi, s'il vous plaît.
Réponses
6 cvgmt
Répondez au commentaire.
Utilisez MeshShading
pour remplir la région.
expr1 = {x, y};
expr2 = With[{z = x + I*y}, E^z // ReIm // ComplexExpand];
ParametricPlot[#, {x, -4, 4}, {y, -4, 4},
MeshFunctions -> {#3 &, #4 &, #4 - #3 &, Sqrt[#3^2 + #4^2] &},
Mesh -> {{1}, {1}, {0}, {1}},
MeshShading -> {{{{Red, None}, {None, None}}, {{Red, None}, {None,
None}}}, {{{None, None}, {None, None}}, {{None,
None}, {None, None}}}},
MeshStyle -> {{Thick, Red, Opacity[1]}, {Thick, Green,
Opacity[1]}, {Thick, Blue, Opacity[1]}, {Thick, Yellow,
Opacity[1]}}, Axes -> False, PlotRange -> 4,
BoundaryStyle -> None,
LabelStyle -> {FontFamily -> "Times", Blue}, PlotPoints -> 80,
PlotStyle -> None] & /@ {expr1, expr2} // GraphicsRow
Simplifier
expr1 = {x, y};
expr2 = With[{z = x + I*y}, E^z // ReIm // ComplexExpand];
ParametricPlot[#, {x, -4, 4}, {y, -4, 4},
MeshFunctions -> {#3 &, #4 &, #4 - #3 &, Sqrt[#3^2 + #4^2] &},
Mesh -> {{1}, {1}, {0}, {1}},
MeshStyle -> {{Thick, Red, Opacity[1]}, {Thick, Green,
Opacity[1]}, {Thick, Blue, Opacity[1]}, {Thick, Yellow,
Opacity[1]}}, Axes -> False, PlotRange -> 4,
BoundaryStyle -> None,
LabelStyle -> {FontFamily -> "Times", Blue}, PlotPoints -> 80,
PlotStyle -> None] & /@ {expr1, expr2} // GraphicsRow
Original
expr = With[{z = x + I*y}, E^z // ReIm // ComplexExpand]
xy = ParametricPlot[{x, y}, {x, -2, 2}, {y, -2, 2},
MeshFunctions -> {#1 &, #2 &, #2 - #1 &, Sqrt[#1^2 + #2^2] &},
Mesh -> {{1}, {1}, {0}, {1}},
MeshStyle -> {{Thick, Red, Opacity[1]}, {Thick, Green,
Opacity[1]}, {Thick, Blue, Opacity[1]}, {Thick, Yellow,
Opacity[1]}}, PlotPoints -> 50, FrameLabel -> {x, y},
PlotStyle -> None];
uv = ParametricPlot[expr, {x, -4, 4}, {y, -4, 4},
MeshFunctions -> {#3 &, #4 &, #4 - #3 &, Sqrt[#3^2 + #4^2] &},
Mesh -> {{1}, {1}, {0}, {1}},
MeshStyle -> {{Thick, Red, Opacity[1]}, {Thick, Green,
Opacity[1]}, {Thick, Blue, Opacity[1]}, {Thick, Yellow,
Opacity[1]}}, Axes -> False, PlotRange -> 8,
BoundaryStyle -> None, FrameLabel -> {u, v},
LabelStyle -> {FontFamily -> "Times", Blue}, PlotPoints -> 80,
PlotStyle -> None];
GraphicsRow[{xy, uv}]