Découverte$\lim_{x \to \infty} (x + \frac{2x^{3}}{3} - \frac{2(x^2+1)^{\frac{3}{2}}}{3})$

Aug 18 2020

$\lim_{x \to \infty} (x + \frac{2x^{3}}{3} - \frac{2(x^2+1)^{\frac{3}{2}}}{3})$cette limite selon wolframalpha est égale à$0$.

Donc c'est mon travail jusqu'à présent

$\lim_{x \to \infty} (x + \frac{2x^{3}}{3} - \frac{2(x^2+1)^{\frac{3}{2}}}{3})$la sortie est$\infty - \infty$qui est de forme indéterminée.

Donc, ensuite, je l'ai essentiellement mais sur le même dénominateur:$\frac{1}{3}$ $((3x + 2x^3 - 2(x^2+1)^{\frac{3}{2}})$et tourné$2(x^2+1)^{\frac{3}{2}}$en quelque chose de plus facile à travailler$2\sqrt{x^2+1}+2x^{2}\sqrt{x^2+1}$

maintenant la limite est$\frac{1}{3} \lim_{x \to \infty} ((3x + 2x^3-2\sqrt{x^2+1} -2x^{2}\sqrt{x^2+1})$et c'est là que je suis coincé à faire ensuite et perdu.

Réponses

4 MichaelRozenberg Aug 18 2020 at 02:02

$$x + \frac{2x^{3}}{3} - \frac{2(x^2+1)^{\frac{3}{2}}}{3}=\frac{\left(x+\frac{2}{3}x^3\right)^2-\frac{4}{9}(x^2+1)^3}{x + \frac{2x^{3}}{3}+ \frac{2(x^2+1)^{\frac{3}{2}}}{3}}=$$ $$=\frac{-\frac{1}{3}x^2-\frac{4}{9}}{x + \frac{2x^{3}}{3}+ \frac{2(x^2+1)^{\frac{3}{2}}}{3}}=\frac{-\frac{1}{3x}-\frac{4}{9x^3}}{\frac{1}{x^2} + \frac{2}{3}+ \frac{2(1+\frac{1}{x^2})^{\frac{3}{2}}}{3}}\rightarrow0$$pour$x\rightarrow+\infty.$

3 RomainS Aug 18 2020 at 01:55

D'abord, observez$$3x+2x^3-2(x^2+1)^{3/2}=\frac{3x^2+4}{-3x-2x^3-2\sqrt{x^2+1}-2x^2\sqrt{x^2+1}}.$$Le haut est quadratique, tandis que le bas croît de l'ordre de$x^3$, d'où la limite comme$x\to \infty$est zéro.

2 user Aug 18 2020 at 02:22

Par approximation binomiale

$$(x^2+1)^{\frac{3}{2}}=(x^2)^{\frac{3}{2}}\left(1+\frac1{x^2}\right)^{\frac{3}{2}} = x^3+\frac32 x +O\left(\frac1{x}\right)\implies \frac{2(x^2+1)^{\frac{3}{2}}}{3} = \frac{2x^{3}}{3}+x+O\left(\frac1{x}\right)$$

Donc

$$x + \frac{2x^{3}}{3} - \frac{2(x^2+1)^{\frac{3}{2}}}{3}=O\left(\frac1{x}\right)\to 0$$

2 labbhattacharjee Aug 18 2020 at 02:34

Indice:

WLOG$x=\tan y\implies y\to\dfrac\pi2$

$$\dfrac{3\tan y+2\tan^3y-2\sec^3y}3$$

$$=\dfrac{3\sin y\cos^2y+2\sin^3y-2}{3\cos^3y}$$

Le numérateur$$=3(1-\sin^2y)\sin y+2\sin^3y-2=\cdots=(1-\sin y)^2(2\sin y+1)$$

Utilisez enfin$$\dfrac{1-\sin y}{\cos y}=\dfrac{\cos y}{1+\sin y}$$

1 Keen-ameteur Aug 18 2020 at 02:06

Tu devrais te rappeler que$\sqrt{a}-\sqrt{b}=\frac{a-b}{\sqrt{a}+\sqrt{b}}$, puisque$(c-d)(c+d)=c^2-d^2$. Cela devrait vous aider à simplifier l'expression avec la racine carrée.

Bien que je ne comprenne pas comment vous avez obtenu ce que vous avez écrit, d'après ce que je peux voir, vous devriez obtenir :

$$ x+ \frac{2x^3}{3}-\frac{2(x^2+1)^{\frac{3}{2}}}{3}=x +\frac{2}{3}\Big( \frac{x^6-(x^2+1)^3}{x^3 +(x^2+1)^{ \frac{3}{2} } } \Big)=x+\frac{2}{3}\frac{-3x^4-3x^2-1}{x^3+(x^2+1)^{ \frac{3}{2} }}$$

1 ClaudeLeibovici Aug 18 2020 at 12:25

$$A=x + \frac{2x^{3}}{3} - \frac{2(x^2+1)^{\frac{3}{2}}}{3}=x + \frac{2x^{3}}{3} - \frac{2x^3}{3}\left(1+\frac{1}{x^2}\right)^{3/2}$$Pour le tout dernier terme, laissez$\frac{1}{x^2}=\epsilon$et utiliser le développement binomial$$(1+\epsilon)^{3/2}=1+\frac{3 \epsilon }{2}+\frac{3 \epsilon ^2}{8}+O\left(\epsilon ^3\right)$$Remplacer$\epsilon$par$\frac{1}{x^2}$faire$$\left(1+\frac{1}{x^2}\right)^{3/2}=1+\frac{3}{2 x^2}+\frac{3}{8 x^4}+O\left(\frac{1}{x^6}\right)$$ $$A=x + \frac{2x^{3}}{3} - \frac{2(x^2+1)^{\frac{3}{2}}}{3}=x + \frac{2x^{3}}{3} - \frac{2x^3}{3}\left(1+\frac{3}{2 x^2}+\frac{3}{8 x^4}+O\left(\frac{1}{x^6}\right)\right)$$ $$A=-\frac{1}{4 x}+O\left(\frac{1}{x^3}\right)$$