Interpolation de la surface FX Vol à partir de la grève non uniforme vs grille ténor
TL; DR
J'essaie d'adapter une surface vol aux cotations d'options FX du marché afin de créer un modèle vol local avec lequel établir le prix. Contrairement aux options listées qui ont généralement une belle grille rectangulaire de grèves et de ténors, les options FX ont tendance à être négociées OTC et les cotations disponibles ne fournissent pas une grille uniforme.
Quelle est l'approche judicieuse à adopter pour l'interpolation 2D sur des grilles non uniformes? Les idées que j'avais étaient:
- Créez une grille carrée plus fine de points et interpolez les valeurs pour ceux-ci (par exemple en utilisant
scipy.interpolate.griddata
ci-dessous), et construisez la surface vol pour cela (bien que cela semble inutile) - Appliquez une certaine transformation aux grèves d'option pour les répartir uniformément (en étirant les ténors plus tôt que les derniers), puis en utilisant un interpolateur de grille 2D standard
Finalement, j'aimerais construire un modèle en QuantLib
utilisant ql.BlackVarianceSurface
, qui nécessite actuellement une grille rectangulaire de vols.
J'aimerais entendre les approches adoptées par les gens, y compris les dangers d'interpolation 2D et les problèmes d'extrapolation.
Plus de détails sur le problème
Voici un exemple de surface de vol FX cotée par le marché:
Une fois que cela est converti en triples (strike, ténor, vol), les frappes ressemblent à ceci:
Cela nous donne une grille non uniforme de vols, tracés sur une surface 2D, ils ressemblent à ceci (en tte et en racine tte):
Cast en une grille carrée en utilisant scipy.interpolate.griddataet bi-interpolé:
Réponses
J'ai essayé quelque chose de ce genre en python Quantlib il y a quelques semaines. Un peu plus simple par rapport à votre approche je pense:
- Commencez par une convention de cotation delta standard pour les vols FX (10D put, 25D put, ATM, 25D call, 10D call)
- calculer la valeur monétaire des options pour obtenir l'ensemble d'exercice (ce sera un ensemble d'exercice important puisque chaque échéance d'option aura des frappes uniques correspondant aux cotations monétaires de la source d'origine)
- interpoler les vols manquants pour l'ensemble complet des frappes pour chaque maturité - je l'ai fait en utilisant la fonction BlackVarianceSurface de Quantlib. Ainsi j'avais une grille complète de maturités / grèves
- J'ai finalement pris ces données et essayé un étalonnage Heston et branché la sortie dans une fonction HestonBlackVolSurface
Les résultats n'étaient pas excellents car les vols implicites de Heston ne reproduisaient pas vraiment mes vols de source d'entrée avec précision, mais cela a probablement plus à voir avec mon mauvais étalonnage et les valeurs de source d'entrée factices que j'ai utilisées. C'était néanmoins un exercice valable.
Au cas où cela pourrait être utile, mon code Quantlib est ci-dessous:
def deltavolquotes(ccypair,fxcurve):
from market import curveinfo
sheetname = ccypair + '_fx_volcurve'
df = pd.read_excel('~/iCloud/python_stuff/finance/marketdata.xlsx', sheet_name=sheetname)
curveinfo = curveinfo(ccypair, 'fxvols')
calendar = curveinfo.loc['calendar', 'fxvols']
daycount = curveinfo.loc['curve_daycount', 'fxvols']
settlement = curveinfo.loc['curve_sett', 'fxvols']
flat_vol = ql.SimpleQuote(curveinfo.loc['flat_vol', 'fxvols'])
flat_vol_shift = ql.SimpleQuote(0)
used_flat_vol = ql.CompositeQuote(ql.QuoteHandle(flat_vol_shift), ql.QuoteHandle(flat_vol), f)
vol_shift = ql.SimpleQuote(0)
calculation_date = fxcurve.referenceDate()
settdate = calendar.advance(calculation_date, settlement, ql.Days)
date_periods = df[ccypair].tolist()
atm = [ql.CompositeQuote(ql.QuoteHandle(vol_shift), ql.QuoteHandle(ql.SimpleQuote(i)), f) for i in
df['ATM'].tolist()]
C25 = [ql.CompositeQuote(ql.QuoteHandle(vol_shift), ql.QuoteHandle(ql.SimpleQuote(i)), f) for i in
df['25C'].tolist()]
P25 = [ql.CompositeQuote(ql.QuoteHandle(vol_shift), ql.QuoteHandle(ql.SimpleQuote(i)), f) for i in
df['25P'].tolist()]
C10 = [ql.CompositeQuote(ql.QuoteHandle(vol_shift), ql.QuoteHandle(ql.SimpleQuote(i)), f) for i in
df['10C'].tolist()]
P10 = [ql.CompositeQuote(ql.QuoteHandle(vol_shift), ql.QuoteHandle(ql.SimpleQuote(i)), f) for i in
df['10P'].tolist()]
dates = [calendar.advance(settdate, ql.Period(i)) for i in date_periods]
yearfracs = [daycount.yearFraction(settdate, i) for i in dates]
dvq_C25 = [ql.DeltaVolQuote(0.25, ql.QuoteHandle(i), j, 0) for i, j in zip(C25, yearfracs)]
dvq_P25 = [ql.DeltaVolQuote(-0.25, ql.QuoteHandle(i), j, 0) for i, j in zip(P25, yearfracs)]
dvq_C10 = [ql.DeltaVolQuote(0.10, ql.QuoteHandle(i), j, 0) for i, j in zip(C10, yearfracs)]
dvq_P10 = [ql.DeltaVolQuote(-0.10, ql.QuoteHandle(i), j, 0) for i, j in zip(P10, yearfracs)]
info=[settdate,calendar,daycount,df,used_flat_vol,vol_shift,flat_vol_shift,date_periods]
return atm,dvq_C25,dvq_P25,dvq_C10,dvq_P10,dates,yearfracs,info
def fxvolsurface(ccypair,FX,fxcurve,curve):
atm,dvq_C25,dvq_P25,dvq_C10,dvq_P10,dates,yearfracs,info = deltavolquotes(ccypair,fxcurve)
settdate = info[0]
calendar=info[1]
daycount=info[2]
df=info[3]
used_flat_vol=info[4]
vol_shift=info[5]
flat_vol_shift=info[6]
date_periods=info[7]
blackdc_C25=[ql.BlackDeltaCalculator(ql.Option.Call,j.Spot,FX.value(),
fxcurve.discount(i)/fxcurve.discount(settdate),
curve.discount(i)/curve.discount(settdate),
j.value()*(k**0.5))
for i,j,k in zip(dates,dvq_C25,yearfracs)]
blackdc_C10=[ql.BlackDeltaCalculator(ql.Option.Call,j.Spot,FX.value(),
fxcurve.discount(i)/fxcurve.discount(settdate),
curve.discount(i)/curve.discount(settdate),
j.value()*(k**0.5))
for i,j,k in zip(dates,dvq_C10,yearfracs)]
blackdc_P25=[ql.BlackDeltaCalculator(ql.Option.Put,j.Spot,FX.value(),
fxcurve.discount(i)/fxcurve.discount(settdate),
curve.discount(i)/curve.discount(settdate),
j.value()*(k**0.5))
for i,j,k in zip(dates,dvq_P25,yearfracs)]
blackdc_P10=[ql.BlackDeltaCalculator(ql.Option.Put,j.Spot,FX.value(),
fxcurve.discount(i)/fxcurve.discount(settdate),
curve.discount(i)/curve.discount(settdate),
j.value()*(k**0.5))
for i,j,k in zip(dates,dvq_P10,yearfracs)]
C25_strikes=[i.strikeFromDelta(0.25) for i in blackdc_C25]
C10_strikes=[i.strikeFromDelta(0.10) for i in blackdc_C10]
P25_strikes=[i.strikeFromDelta(-0.25) for i in blackdc_P25]
P10_strikes=[i.strikeFromDelta(-0.10) for i in blackdc_P10]
ATM_strikes=[i.atmStrike(j.AtmFwd) for i,j in zip(blackdc_C25,dvq_C25)]
strikeset=ATM_strikes+C25_strikes+C10_strikes+P25_strikes+P10_strikes
strikeset.sort()
hestonstrikes=[P10_strikes,P25_strikes,ATM_strikes,C25_strikes,C10_strikes]
hestonvoldata=[df['10P'].tolist(),df['25P'].tolist(),df['ATM'].tolist(),df['25C'].tolist(),df['10C'].tolist()]
volmatrix=[]
for i in range(0,len(atm)):
volsurface=ql.BlackVolTermStructureHandle(ql.BlackVarianceSurface(settdate,calendar,[dates[i]],
[P10_strikes[i],P25_strikes[i],ATM_strikes[i],C25_strikes[i],C10_strikes[i]],
[[dvq_P10[i].value()],[dvq_P25[i].value()],[atm[i].value()],[dvq_C25[i].value()],
[dvq_C10[i].value()]],
daycount))
volmatrix.append([volsurface.blackVol(dates[i],j,True) for j in strikeset])
volarray=np.array(volmatrix).transpose()
matrix = []
for i in range(0, volarray.shape[0]):
matrix.append(volarray[i].tolist())
fxvolsurface=ql.BlackVolTermStructureHandle(
ql.BlackVarianceSurface(settdate,calendar,dates,strikeset,matrix,daycount))
'''
process = ql.HestonProcess(fxcurve, curve, ql.QuoteHandle(FX), 0.01, 0.5, 0.01, 0.1, 0)
model = ql.HestonModel(process)
engine = ql.AnalyticHestonEngine(model)
print(model.params())
hmh = []
for i in range(0,len(date_periods)):
for j in range(0,len(hestonstrikes)):
helper=ql.HestonModelHelper(ql.Period(date_periods[i]), calendar, FX.value(),hestonstrikes[j][i],
ql.QuoteHandle(ql.SimpleQuote(hestonvoldata[j][i])),fxcurve,curve)
helper.setPricingEngine(engine)
hmh.append(helper)
lm = ql.LevenbergMarquardt()
model.calibrate(hmh, lm,ql.EndCriteria(500, 10, 1.0e-8, 1.0e-8, 1.0e-8))
vs = ql.BlackVolTermStructureHandle(ql.HestonBlackVolSurface(ql.HestonModelHandle(model)))
vs.enableExtrapolation()'''
flatfxvolsurface = ql.BlackVolTermStructureHandle(
ql.BlackConstantVol(settdate, calendar, ql.QuoteHandle(used_flat_vol), daycount))
fxvoldata=pd.DataFrame({'10P strike':P10_strikes,'25P strike':P25_strikes,'ATM strike':ATM_strikes,
'25C strike':C25_strikes,'10C strike':C10_strikes,'10P vol':df['10P'].tolist(),
'25P vol':df['25P'].tolist(),'ATM vol':df['ATM'].tolist(),
'25C vol':df['25C'].tolist(),'10C vol':df['10C'].tolist()})
fxvoldata.index=date_periods
fxvolsdf=pd.DataFrame({'fxvolsurface':[fxvolsurface,flatfxvolsurface],'fxvoldata':[fxvoldata,None]})
fxvolsdf.index=['surface','flat']
fxvolshiftsdf=pd.DataFrame({'fxvolshifts':[vol_shift,flat_vol_shift]})
fxvolshiftsdf.index=['surface','flat']
return fxvolshiftsdf,fxvolsdf
En fin de compte, j'ai trouvé que l'adaptation d'un sourire SABR à chaque ténor (en empruntant un résultat à cette réponse ) était suffisante pour construire une surface vol locale suffisamment lisse et bien comportée pour créer une surface de variance fonctionnant bien. J'y ai également installé un modèle Heston, et les deux surfaces se ressemblent assez. Voici le code final et les ajustements générés (le long extrait tout en bas est nécessaire pour générer ces graphiques, et contient également les données brutes requises)
Tout d'abord, en boucle sur chaque ténor et en ajustant un sourire SABR:
# This is the 'SABR-solution'... fit a SABR smile to each tenor, and let the vol surface interpolate
# between them. Below, we're using the python minimizer to do a fit to the provided smiles
calibrated_params = {}
# params are sigma_0, beta, vol_vol, rho
params = [0.4, 0.6, 0.1, 0.2]
fig, i = plt.figure(figsize=(6, 42)), 1
for tte, group in full_df.groupby('tte'):
fwd = group.iloc[0]['fwd']
expiry = group.iloc[0]['expiry']
strikes = group.sort_values('strike')['strike'].values
vols = group.sort_values('strike')['vol'].values
def f(params):
params[0] = max(params[0], 1e-8) # Avoid alpha going negative
params[1] = max(params[1], 1e-8) # Avoid beta going negative
params[2] = max(params[2], 1e-8) # Avoid nu going negative
params[3] = max(params[3], -0.999) # Avoid nu going negative
params[3] = min(params[3], 0.999) # Avoid nu going negative
calc_vols = np.array([
ql.sabrVolatility(strike, fwd, tte, *params)
for strike in strikes
])
error = ((calc_vols - np.array(vols))**2 ).mean() **.5
return error
cons = (
{'type': 'ineq', 'fun': lambda x: x[0]},
{'type': 'ineq', 'fun': lambda x: 0.99 - x[1]},
{'type': 'ineq', 'fun': lambda x: x[1]},
{'type': 'ineq', 'fun': lambda x: x[2]},
{'type': 'ineq', 'fun': lambda x: 1. - x[3]**2}
)
result = optimize.minimize(f, params, constraints=cons, options={'eps': 1e-5})
new_params = result['x']
calibrated_params[tte] = {'v0': new_params[0], 'beta': new_params[1], 'alpha': new_params[2], 'rho': new_params[3], 'fwd': fwd}
newVols = [ql.sabrVolatility(strike, fwd, tte, *new_params) for strike in strikes]
# Start next round of optimisation with this round's parameters, they're probably quite close!
params = new_params
plt.subplot(len(tenors), 1, i)
i = i+1
plt.plot(strikes, vols, marker='o', linestyle='none', label='market {}'.format(expiry))
plt.plot(strikes, newVols, label='SABR {0:1.2f}'.format(tte))
plt.title("Smile {0:1.3f}".format(tte))
plt.grid()
plt.legend()
plt.show()
génère une séquence de tracés comme celui-ci, qui correspondent tous assez bien:
qui génère des paramètres SABR à chaque ténor ressemblant à ceci (pour cet exemple, j'ai défini les courbes de remise étrangères et nationales pour qu'elles soient plates):
Ensuite, j'ai calibré un modèle vol local et un modèle vol Heston, qui sont en fait assez proches l'un de l'autre:
# Fit a local vol surface to a strike-tenor grid extrapolated according to SABR
strikes = np.linspace(1.0, 1.5, 21)
expiration_dates = [calc_date + ql.Period(int(365 * x), ql.Days) for x in params.index]
implied_vols = []
for tte, row in params.iterrows():
fwd, v0, beta, alpha, rho = row['fwd'], row['v0'], row['beta'], row['alpha'], row['rho']
vols = [ql.sabrVolatility(strike, fwd, tte, v0, beta, alpha, rho) for strike in strikes]
implied_vols.append(vols)
implied_vols = ql.Matrix(np.matrix(implied_vols).transpose().tolist())
local_vol_surface = ql.BlackVarianceSurface(calc_date, calendar, expiration_dates, strikes, implied_vols, day_count)
# Fit a Heston model to the data as well
v0 = 0.005; kappa = 0.01; theta = 0.0064; rho = 0.0; sigma = 0.01
heston_process = ql.HestonProcess(dom_dcf_curve, for_dcf_curve, ql.QuoteHandle(ql.SimpleQuote(spot)), v0, kappa, theta, sigma, rho)
heston_model = ql.HestonModel(heston_process)
heston_engine = ql.AnalyticHestonEngine(heston_model)
# Set up Heston 'helpers' to calibrate to
heston_helpers = []
for idx, row in full_df.iterrows():
vol = row['vol']
strike = row['strike']
tenor = ql.Period(row['expiry'])
helper = ql.HestonModelHelper(tenor, calendar, spot, strike, ql.QuoteHandle(ql.SimpleQuote(vol)), dom_dcf_curve, for_dcf_curve)
helper.setPricingEngine(heston_engine)
heston_helpers.append(helper)
lm = ql.LevenbergMarquardt(1e-8, 1e-8, 1e-8)
heston_model.calibrate(heston_helpers, lm, ql.EndCriteria(5000, 100, 1.0e-8, 1.0e-8, 1.0e-8))
theta, kappa, sigma, rho, v0 = heston_model.params()
feller = 2 * kappa * theta - sigma ** 2
print(f"theta = {theta:.4f}, kappa = {kappa:.4f}, sigma = {sigma:.4f}, rho = {rho:.4f}, v0 = {v0:.4f}, spot = {spot:.4f}, feller = {feller:.4f}")
heston_handle = ql.HestonModelHandle(heston_model)
heston_vol_surface = ql.HestonBlackVolSurface(heston_handle)
# Plot the two vol surfaces ...
plot_vol_surface([local_vol_surface, heston_vol_surface], plot_years=np.arange(0.1, 1.0, 0.1), plot_strikes=np.linspace(1.05, 1.45, 20))
Nous nous attendons à ce que le modèle de vol local tarife correctement les vanilles mais donne une dynamique de vol non réaliste, alors que nous nous attendons à ce que Heston donne une meilleure dynamique de vol mais pas si bien les vanilles de prix, mais en calibrant une fonction de levier et en utilisant un modèle vol local stochastique de Heston, nous pouvons éventuellement obtenir le meilleur des deux mondes - et c'est aussi un bon test que la surface vol locale que nous avons créée se comporte bien
# Calculate the Dupire instantaneous vol surface
local_vol_surface.setInterpolation('bicubic')
local_vol_handle = ql.BlackVolTermStructureHandle(local_vol_surface)
local_vol = ql.LocalVolSurface(local_vol_handle, dom_dcf_curve, for_dcf_curve, ql.QuoteHandle(ql.SimpleQuote(spot)))
# Calibrating a leverage function
end_date = ql.Date(21, 9, 2021)
generator_factory = ql.MTBrownianGeneratorFactory(43)
timeStepsPerYear = 182
nBins = 101
calibrationPaths = 2**19
stoch_local_mc_model = ql.HestonSLVMCModel(local_vol, heston_model, generator_factory, end_date, timeStepsPerYear, nBins, calibrationPaths)
leverage_functon = stoch_local_mc_model.leverageFunction()
plot_vol_surface(leverage_functon, funct='localVol', plot_years=np.arange(0.5, 0.98, 0.1), plot_strikes=np.linspace(1.05, 1.35, 20))
ce qui produit une belle fonction de levier, qui est proche de 1 partout (indiquant que l'ajustement brut de Heston était déjà assez bon)
Code Boilerplate pour générer les images ci-dessus (y compris la conversion FX delta-to-strike):
import warnings
warnings.filterwarnings('ignore')
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
import matplotlib.cm as cm
from mpl_toolkits.mplot3d import Axes3D
from scipy.stats import norm
from scipy import optimize, stats
import QuantLib as ql
calc_date = ql.Date(1, 9, 2020)
def plot_vol_surface(vol_surface, plot_years=np.arange(0.1, 3, 0.1), plot_strikes=np.arange(70, 130, 1), funct='blackVol'):
if type(vol_surface) != list:
surfaces = [vol_surface]
else:
surfaces = vol_surface
fig = plt.figure(figsize=(10, 6))
ax = fig.gca(projection='3d')
X, Y = np.meshgrid(plot_strikes, plot_years)
Z_array, Z_min, Z_max = [], 100, 0
for surface in surfaces:
method_to_call = getattr(surface, funct)
Z = np.array([method_to_call(float(y), float(x))
for xr, yr in zip(X, Y)
for x, y in zip(xr, yr)]
).reshape(len(X), len(X[0]))
Z_array.append(Z)
Z_min, Z_max = min(Z_min, Z.min()), max(Z_max, Z.max())
# In case of multiple surfaces, need to find universal max and min first for colourmap
for Z in Z_array:
N = (Z - Z_min) / (Z_max - Z_min) # normalize 0 -> 1 for the colormap
surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, linewidth=0.1, facecolors=cm.coolwarm(N))
m = cm.ScalarMappable(cmap=cm.coolwarm)
m.set_array(Z)
plt.colorbar(m, shrink=0.8, aspect=20)
ax.view_init(30, 300)
def generate_multi_paths_df(process, num_paths=1000, timestep=24, length=2):
"""Generates multiple paths from an n-factor process, each factor is returned in a seperate df"""
times = ql.TimeGrid(length, timestep)
dimension = process.factors()
rng = ql.GaussianRandomSequenceGenerator(ql.UniformRandomSequenceGenerator(dimension * timestep, ql.UniformRandomGenerator()))
seq = ql.GaussianMultiPathGenerator(process, list(times), rng, False)
paths = [[] for i in range(dimension)]
for i in range(num_paths):
sample_path = seq.next()
values = sample_path.value()
spot = values[0]
for j in range(dimension):
paths[j].append([x for x in values[j]])
df_paths = [pd.DataFrame(path, columns=[spot.time(x) for x in range(len(spot))]) for path in paths]
return df_paths
# Define functions to map from delta to strike
def strike_from_spot_delta(tte, fwd, vol, delta, dcf_for, put_call):
sigma_root_t = vol * np.sqrt(tte)
inv_norm = norm.ppf(delta * put_call * dcf_for)
return fwd * np.exp(-sigma_root_t * put_call * inv_norm + 0.5 * sigma_root_t * sigma_root_t)
def strike_from_fwd_delta(tte, fwd, vol, delta, put_call):
sigma_root_t = vol * np.sqrt(tte)
inv_norm = norm.ppf(delta * put_call)
return fwd * np.exp(-sigma_root_t * put_call * inv_norm + 0.5 * sigma_root_t * sigma_root_t)
# World State for Vanilla Pricing
spot = 1.17858
rateDom = 0.0
rateFor = 0.0
calendar = ql.NullCalendar()
day_count = ql.Actual365Fixed()
# Set up the flat risk-free curves
riskFreeCurveDom = ql.FlatForward(calc_date, rateDom, ql.Actual365Fixed())
riskFreeCurveFor = ql.FlatForward(calc_date, rateFor, ql.Actual365Fixed())
dom_dcf_curve = ql.YieldTermStructureHandle(riskFreeCurveDom)
for_dcf_curve = ql.YieldTermStructureHandle(riskFreeCurveFor)
tenors = ['1W', '2W', '1M', '2M', '3M', '6M', '9M', '1Y', '18M', '2Y']
deltas = ['ATM', '35D Call EUR', '35D Put EUR', '25D Call EUR', '25D Put EUR', '15D Call EUR', '15D Put EUR', '10D Call EUR', '10D Put EUR', '5D Call EUR', '5D Put EUR']
vols = [[7.255, 7.428, 7.193, 7.61, 7.205, 7.864, 7.261, 8.033, 7.318, 8.299, 7.426],
[7.14, 7.335, 7.07, 7.54, 7.08, 7.836, 7.149, 8.032, 7.217, 8.34, 7.344],
[7.195, 7.4, 7.13, 7.637, 7.167, 7.984, 7.286, 8.226, 7.394, 8.597, 7.58],
[7.17, 7.39, 7.11, 7.645, 7.155, 8.031, 7.304, 8.303, 7.438, 8.715, 7.661],
[7.6, 7.827, 7.547, 8.105, 7.615, 8.539, 7.796, 8.847, 7.952, 9.308, 8.222],
[7.285, 7.54, 7.26, 7.878, 7.383, 8.434, 7.671, 8.845, 7.925, 9.439, 8.344],
[7.27, 7.537, 7.262, 7.915, 7.425, 8.576, 7.819, 9.078, 8.162, 9.77, 8.713],
[7.275, 7.54, 7.275, 7.935, 7.455, 8.644, 7.891, 9.188, 8.283, 9.922, 8.898],
[7.487, 7.724, 7.521, 8.089, 7.731, 8.742, 8.197, 9.242, 8.592, 9.943, 9.232],
[7.59, 7.81, 7.645, 8.166, 7.874, 8.837, 8.382, 9.354, 8.816, 10.065, 9.51]]
# Convert vol surface to strike surface (we need both)
full_option_surface = []
for i, name in enumerate(deltas):
delta = 0.5 if name == "ATM" else int(name.split(" ")[0].replace("D", "")) / 100.
put_call = 1 if name == "ATM" else -1 if name.split(" ")[1] == "Put" else 1
for j, tenor in enumerate(tenors):
expiry = calc_date + ql.Period(tenor)
tte = day_count.yearFraction(calc_date, expiry)
fwd = spot * for_dcf_curve.discount(expiry) / dom_dcf_curve.discount(expiry)
for_dcf = for_dcf_curve.discount(expiry)
vol = vols[j][i] / 100.
# Assume that spot delta used out to 1Y (used to be this way...)
if tte < 1.:
strike = strike_from_spot_delta(tte, fwd, vol, put_call*delta, for_dcf, put_call)
else:
strike = strike_from_fwd_delta(tte, fwd, vol, put_call*delta, put_call)
full_option_surface.append({"vol": vol, "fwd": fwd, "expiry": tenor, "tte": tte, "delta": put_call*delta, "strike": strike, "put_call": put_call, "for_dcf": for_dcf, "name": name})
full_df = pd.DataFrame(full_option_surface)
display_df = full_df.copy()
display_df['call_delta'] = 1 - (display_df['put_call'].clip(0) - display_df['delta'])
df = display_df.set_index(['tte', 'call_delta']).sort_index()[['strike']].unstack()
df = df.reindex(sorted(df.columns, reverse=True), axis=1)
fig = plt.figure(figsize=(12,9))
plt.subplot(2,1,1)
plt.plot(full_df['tte'], full_df['strike'], marker='o', linestyle='none', label='strike grid')
plt.title("Option Strike Grid, tte vs. K")
plt.grid()
plt.xlim(0, 2.1)
df