คะแนนครอสวาลต่ำมากสำหรับการถดถอยที่มีขนาดใหญ่. corr () ระหว่างคุณลักษณะและผลลัพธ์

Aug 18 2020

ฉันพยายามทำให้เกิดการถดถอยโดยใช้ sklearn ระหว่างคุณลักษณะหนึ่งและหนึ่งผลลัพธ์ นี่คือชุดข้อมูลที่ฉันมี:

       bruto  ukupno gradjevinski din
0    2494.98                857951.27
1    2912.60                694473.11
2    3397.50               1310529.72
3    2678.00                199688.14
4    4310.00               1377366.95
5    2086.28                569312.33
6    3061.80                660803.42
7    4095.00               1187732.61
8    3997.00               1304793.08
9    6503.88               1659629.13
10   6732.00               1264178.31
11    940.10                172497.94
12   1543.00                598772.40
13   5903.85                809681.19
14   2861.61                333983.85
15   3682.76               1430771.50
16   2802.00               1145812.21
17   3032.00                356840.54
18   2635.00                543912.80
19   3749.00               1004940.27
20   4300.50               1889560.55
21   9722.00               2137376.95
22   3823.33                891633.50
23   1648.21                335115.40
24  24575.00              19273129.14
25   3926.00               1223803.28
26   3228.00                874000.00
27   4062.00               1090000.00
28   1316.24                332718.54
29   2497.99                519398.70
30  12123.94               2504783.69
31   2057.50                957042.37
32   2495.00                857951.27
33   3770.73               1743978.85
34    864.00                251269.48
35    774.71                192487.26

ฉันพบความสัมพันธ์ระหว่างคุณลักษณะและผลลัพธ์กับ. crr ():

                            bruto  ukupno gradjevinski din
bruto                    1.000000                 0.878914
ukupno gradjevinski din  0.878914                 1.000000

ฉันมีค่าเท่ากับ 0.87 และฉันคิดว่านั่นดีมากสำหรับการถดถอย แต่เมื่อฉันสร้างแบบจำลองการถดถอยและเมื่อฉันได้คะแนนครอสวาลฉันจะได้รับค่าสำหรับคะแนนครอสวาลที่เป็นลบและมากกว่า 1 (บางครั้ง -50.23) และนั่นเป็นเรื่องแปลกมากสำหรับฉัน ฉันได้ลองใช้โมเดลต่างๆมากมายและด้วยจำนวนการพับที่แตกต่างกัน แต่ผลลัพธ์ก็เหมือนกัน นี่คือรหัสสำหรับการถดถอย:

features = df[['bruto']]
results = df[['ukupno gradjevinski din']]

regressors = [["Linear Regression", LinearRegression(normalize=False)],
              ["Lasso Regression", Lasso(normalize=False)],
              ["Gaussian Process Regressor", GaussianProcessRegressor()],              
              ["SVR linear", SVR(kernel = 'linear', gamma='scale', max_iter = 1500)],
              ["SVR poly 2", SVR(kernel = 'poly', degree=2, gamma='scale', max_iter = 1500)],
              ["SVR poly 3", SVR(kernel = 'poly', degree=3, gamma='scale', max_iter = 1500)],
              ["SVR poly 4", SVR(kernel = 'poly', degree=4, gamma='scale', max_iter = 1500)],
              ["SVR poly 5", SVR(kernel = 'poly', degree=5, gamma='scale', max_iter = 1500)],
              ["SVR rbf C=0.01", SVR(kernel = 'rbf', C=0.01, gamma='scale', max_iter = 1500)],              
              ["SVR rbf C=0.1", SVR(kernel = 'rbf', C=0.1, gamma='scale', max_iter = 1500)],
              ["SVR rbf C=0.5", SVR(kernel = 'rbf', C=0.5, gamma='scale', max_iter = 1500)],
              ["SVR rbf C=1", SVR(kernel = 'rbf', C=1, gamma='scale', max_iter = 1500)],              
              ["SVR rbf C=10", SVR(kernel = 'rbf', C=10.0, gamma='scale', max_iter = 1500)],
              ["SVR rbf C=20", SVR(kernel = 'rbf', C=20.0, gamma='scale', max_iter = 1500)],
              ["SVR rbf C=50", SVR(kernel = 'rbf', C=50.0, gamma='scale', max_iter = 1500)],              
              ["SVR sigmoid", SVR(kernel = 'sigmoid', gamma='scale', max_iter = 1500)],
              ["GradientBoostingRegressor", GradientBoostingRegressor()],
              ["RandomForestRegressor", RandomForestRegressor(n_estimators = 150)],
              ["DecisionTreeRegressor", DecisionTreeRegressor(max_depth=10)],
              ["Bagging Regressor TREE", BaggingRegressor(base_estimator = DecisionTreeRegressor(max_depth=15))],
              ["Bagging Regressor FOREST", BaggingRegressor(base_estimator = RandomForestRegressor(n_estimators = 100))],
              ["Bagging Regressor linear", BaggingRegressor(base_estimator = LinearRegression(normalize=True))],
              ["Bagging Regressor lasso", BaggingRegressor(base_estimator = Lasso(normalize=True))],
              ["Bagging Regressor SVR rbf", BaggingRegressor(base_estimator = SVR(kernel = 'rbf', C=10.0, gamma='scale'))],
              ["Extra Trees Regressor", ExtraTreesRegressor(n_estimators = 150)],
              ["K-Neighbors Regressor 1", KNeighborsRegressor(n_neighbors=1)],
              ["K-Neighbors Regressor 2", KNeighborsRegressor(n_neighbors=2)],
              ["K-Neighbors Regressor 3", KNeighborsRegressor(n_neighbors=3)],
              ["AdaBoostRegressor", AdaBoostRegressor(base_estimator=None)],
              ["AdaBoostRegressor tree", AdaBoostRegressor(base_estimator=DecisionTreeRegressor(max_depth=15))],
              ["AdaBoostRegressor forest", AdaBoostRegressor(base_estimator=RandomForestRegressor(n_estimators = 100))],
              ["AdaBoostRegressor lin reg", AdaBoostRegressor(base_estimator=LinearRegression(normalize=True))],
              ["AdaBoostRegressor lasso", AdaBoostRegressor(base_estimator = Lasso(normalize=True))]]


for reg in regressors:

     try:

           scores = cross_val_score(reg[1], features, results, cv=5)
           scores = np.average(scores)
           print('cross val score', scores)
           print()

     except:
          continue

ฉันได้พยายามปรับขนาดคุณสมบัติของฉันด้วย Normalizer, StandardScaler และ MinMaxScaler แต่ผลลัพธ์ก็เหมือนกัน ความช่วยเหลือใด ๆ

คำตอบ

1 Yahya Aug 18 2020 at 06:41

ฉันกำลังจะโพสต์คำตอบของฉันในฟอรัมอื่น แต่มันถูกย้ายมาที่นี่

มีสิ่งสำคัญบางประการที่คุณควรจำไว้:

  1. ไม่ใช่ผู้ที่มีอัลกอริทึมที่ดีที่สุดที่จะชนะ เป็นผู้ที่มีข้อมูลมากที่สุด (Banko และ Brill, 2001)

Bank and Brill ในปี 2544 ได้ทำการเปรียบเทียบระหว่างอัลกอริทึม 4 แบบที่แตกต่างกันพวกเขายังคงเพิ่มขนาดชุดการฝึกอบรมเป็นหลักล้านและได้ข้อสรุปที่ยกมาข้างต้น และข้อมูลของคุณน้อยเกินไป !

  1. เมื่อใดก็ตามที่คุณพูดคุยเกี่ยวกับการเป็น Linear รุ่นเพียงจำศัตรูของพวกเขา - ค่าผิดปกติ หากคุณลงจุดข้อมูลคุณจะเห็นได้ชัดเจน

  1. cross_val_scoreส่งคืน R ^ 2 โดยค่าเริ่มต้นสำหรับ Linear Model เกือบทุกชนิด (เช่น Regressor) ค่าที่ดีที่สุดของเมตริกนี้ = 1 (เช่นพอดีทั้งหมด) หรือ = 0 (เช่นเส้นแนวนอน) หรืออาจเป็นค่าลบก็ได้ (เช่นแย่กว่าเส้นแนวนอน) ข้อมูลเพิ่มเติมที่นี่ ถัดไปในการทดสอบที่ฉันทำคุณจะเห็นว่าผลลัพธ์นั้นถูกต้องอย่างไร

  2. รูปแบบทางเลือกคือMulti-layer Perceptron Regressor; ด้วยจำนวนเลเยอร์ = 3 โมเดลจะแมปฟังก์ชันที่ซับซ้อนใด ๆ

  3. การตรวจสอบความถูกต้องข้ามกันจะให้บริการได้ดีที่สุดหากคุณมีข้อมูลเพียงพอ อย่างไรก็ตามในกรณีของคุณคะแนน CV จะแตกต่างกันอย่างเห็นได้ชัด

โปรดไตร่ตรองผลลัพธ์ของการทดลองแบบอธิบายตนเองดังต่อไปนี้:

from sklearn.linear_model import LinearRegression
from sklearn.model_selection import cross_val_score
from sklearn.neural_network import MLPRegressor
from scipy.stats import pearsonr
import numpy as np
import matplotlib.pyplot as plt

X = np.array([2494.98,2912.6,3397.5,2678,4310,2086.28,3061.8,4095,3997,
              6503.88,6732,940.1,1543,5903.85,2861.61,3682.76,2802,3032,
              2635,3749,4300.5,9722,3823.33,1648.21,24575,3926,3228,4062,1316.24,
              2497.99,12123.94,2057.5,2495,3770.73,864,774.71]).reshape(-1, 1)

y = np.array([857951.27,694473.11,1310529.72,199688.14,1377366.95,569312.33,660803.42,1187732.61,
          1304793.08,1659629.13,1264178.31,172497.94,598772.4,809681.19,333983.85,1430771.5,1145812.21,
          356840.54,543912.8,1004940.27,1889560.55,2137376.95,891633.5,335115.4,19273129.14,1223803.28,
          874000,1090000,332718.54,519398.7,2504783.69,957042.37,857951.27,1743978.85,251269.48,192487.26])

X_, y_ = zip(*sorted(zip(X, y)))
plt.plot(X_, y_, '-x')
plt.title("Plot of Dataset")
plt.show()

print("Linear Regression :: Before Removing An Outlier")
reg = LinearRegression()
print(np.average(cross_val_score(reg, X, y, cv=3)))

X, y = X_[:-1], y_[:-1]
plt.plot(X, y, '-x')
plt.title("Plot of Dataset After Removing Outlier")
plt.show()

print("Linear Regression :: After Removing An Outlier")
reg = LinearRegression()
print(np.average(cross_val_score(reg, np.array(X).reshape(-1, 1), y, cv=3)))

print("Multi-layer Perceptron Regressor :: The Effect of Mapping Complicated / Non-Linear Function")
mlp = MLPRegressor(hidden_layer_sizes=(16, 16, 16), random_state=2020, activation='identity', max_iter=1000)
print(np.average(cross_val_score(mlp, np.array(X).reshape(-1, 1), y, cv=3)))

ผล

หลังจากลบค่าสุดขีดเพียงค่าเดียว ( โดยไม่ต้องสำรวจเพิ่มเติมหรือทำงานแฟนซีใด ๆ เช่นการใช้เครื่องตรวจจับค่าผิดปกติใด ๆ ) อย่างที่คุณเห็นจะไม่มีบรรทัดเดียวที่เหมาะกับทุกจุด

Linear Regression :: Before Removing An Outlier
Average CVs Score: -1.7085612243433703

Linear Regression :: After Removing An Outlier
Average CVs Score: -0.12386365189238795

Multi-layer Perceptron Regressor :: The Effect of Mapping Complicated / Non-Linear Function
Average CVs Score: 0.16131374234257037