Comment évaluer $\int_0^{\pi/2} x\ln^2(\sin x)\textrm{d}x$ d'une autre façon?
Le problème suivant
$$\int_0^{\pi/2} x\ln^2(\sin x)\textrm{d}x=\frac{1}{2}\ln^2(2)\zeta(2)-\frac{19}{32}\zeta(4)+\frac{1}{24}\ln^4(2)+\operatorname{Li}_4\left(\frac{1}{2}\right)\tag1$$
était déjà résolu dans cette solution.
La question ici est de savoir comment prouver$(1)$ en utilisant la série de Fourier de
$$\tan x\ln(\sin x)=-\sum_{n=1}^\infty\left(\psi\left(\frac{n+1}{2}\right)-\psi\left(\frac{n}{2}\right)-\frac1n\right)\sin(2nx)$$
$$=-\sum_{n=1}^\infty\left(\int_0^1\frac{1-t}{1+t}t^{n-1}dt\right)\sin(2nx),\quad 0<x<\frac{\pi}{2}$$
Je me demande quel genre de manipulation intelligente nous devons faire pour créer l'intégrale dans $(1)$. Je suis sûr que ce serait une solution incroyable.
Merci en avance.
Cette série de Fourier peut être trouvée dans le livre, Intégrales presque impossibles, Sommes et séries , page$243$, Eq$(3.281)$.
Réponses
De là, nous avons
$$\frac23\arcsin^4x=\sum_{n=1}^\infty\frac{H_{n-1}^{(2)}(2x)^{2n}}{n^2{2n\choose n}}=\sum_{n=1}^\infty\frac{H_{n}^{(2)}(2x)^{2n}}{n^2{2n\choose n}}-\sum_{n=1}^\infty\frac{(2x)^{2n}}{n^4{2n\choose n}}$$
Ensemble $x=1$ on a
$$\sum_{n=1}^\infty\frac{4^n}{n^4{2n\choose n}}=\sum_{n=1}^\infty\frac{4^nH_{n}^{(2)}}{n^2{2n\choose n}}-\frac{15}{4}\zeta(4)\tag1$$
Dans cette question, nous avons montré$$\sum_{n=1}^\infty\frac{4^nH_n}{n^3{2n\choose n}}=-\sum_{n=1}^\infty\frac{4^nH_n^{(2)}}{n^2{2n\choose n}}+12\ln^2(2)\zeta(2)\tag2$$
Ajouter $(1)$ et $(2)$ rendements
$$\sum_{n=1}^\infty\frac{4^n}{n^4{2n\choose n}}=12\ln^2(2)\zeta(2)-\frac{15}{4}\zeta(4)-\sum_{n=1}^\infty\frac{4^nH_n}{n^3{2n\choose n}}$$
En utilisant la série de Fourier de $\tan x\ln(\sin x)$, nous avons montré dans cette solution :
$$\sum_{n=1}^\infty\frac{4^nH_n}{n^3{2n\choose n}}=-8\text{Li}_4\left(\frac12\right)+\zeta(4)+8\ln^2(2)\zeta(2)-\frac{1}{3}\ln^4(2)$$
remplacer ce résultat nous obtenons
$$\sum_{n=1}^\infty\frac{4^n}{n^4{2n\choose n}}=8\text{Li}_4\left(\frac12\right)-\frac{19}{4}\zeta(4)+4\ln^2(2)\zeta(2)+\frac{1}{3}\ln^4(2)\tag3$$
Maintenant, nous utilisons l'extension de série bien connue de $\arcsin^2 x$:
$$\arcsin^2(x)=\frac12\sum_{n=1}^\infty\frac{4^n x^{2n}}{n^2{2n\choose n}}$$
Multipliez les deux côtés par $-\frac{\ln x}{x}$ alors $\int_0^1$ et utiliser ça $-\int_0^1 x^{2n-1}\ln xdx=\frac{1}{4n^2}$ on a
$$\frac18\sum_{n=1}^\infty\frac{4^n}{n^4{2n\choose n}}=-\int_0^1\frac{\ln x\arcsin^2(x)}{x}dx$$
$$\overset{IBP}{=}\int_0^1\frac{\ln^2x\arcsin(x)}{\sqrt{1-x^2}}dx\overset{x=\sin\theta}{=}\int_0^{\pi/2}x\ln^2(\sin x)dx\tag4$$
De $(3)$ et $(4)$ on obtient
$$\int_0^{\pi/2} x\ln^2(\sin x)dx=\frac{1}{2}\ln^2(2)\zeta(2)-\frac{19}{32}\zeta(4)+\frac{1}{24}\ln^4(2)+\operatorname{Li}_4\left(\frac{1}{2}\right)$$
Pour résoudre cette intégrale, utilisez l'intégrale suivante qui peut être prouvée en utilisant l'intégration de contour.
$$\int_{0}^{\frac π 2}(\cos^{p-1}x )\cos(ax)dx=\frac{π}{2^p}\frac{\Gamma(p)}{\Gamma(\frac {p+a+1}{2})\Gamma(\frac {p-a+1}{2})}$$
Sur la différenciation par rapport à $a$, on a
$$\int_{0}^{\frac π 2}x(\cos^{p-1}x )\sin(ax)dx=\frac{π}{2^p}\Gamma(p)\frac{\psi(\frac {p+a+1}{2})-\psi(\frac {p-a+1}{2})}{\Gamma(\frac {p+a+1}{2})\Gamma(\frac {p-a+1}{2})}$$
où $p>0$ et $ -(p+1)<a<(p+1)$ et $\Gamma(x)$ et $\psi(x)$ sont les fonctions gamma et digamma. $p_1=(\frac {p+a+1}{2})$ et $p_2=(\frac {p-a+1}{2})$.Sur la différenciation de l'équation ci-dessus.
$$\frac{\partial }{\partial a}I(a,p)=\frac{π}{2^{p+1}}\frac{\Gamma(p)}{\Gamma(p_1)\Gamma(p_2)}[-(\psi(p_1)-\psi(p_2))^2+\psi'(p_1)+\psi'(p_2)]$$$$=\int_{0}^{\frac π 2}x^2(cos^{p-1}x )\cos(ax)dx$$
Lors de la mise $a=0$, on a
$$J_p=\int_{0}^{\frac π 2}x^2(\cos^{p-1}x )dx=\frac{π}{2^{p+1}}\frac{\Gamma(p)}{\Gamma^2(\frac{p+1}{2})}\psi'(\frac{p+1}{2})$$
Encore une fois différenciant par rapport au paramètre $p$ ,on a
$$\frac d {dp}J_p=\int_{0}^{\frac π 2}x^2(\cos^{p-1}x)\log(\cos x)dx=\frac{π}{2^{p+1}}\frac{\Gamma(p)}{\Gamma^2(\frac{p+1}{2})}\psi'(\frac{p+1}{2})[-\log2+\psi(p)-\psi(\frac{p+1}{2})+\frac {\psi''(\frac{p+1}{2})}{\psi'(\frac{p+1}{2})}$$
À partir de l'intégrale ci-dessus, nous pouvons également calculer ci-dessous l'intégrale en laissant $p=1$.
$$\int_{0}^{\frac π 2}x^2\log(\cos x)dx=\frac{π^3}{24}[-\log2+\frac{\psi''(1)}{\psi'(1)}]=-\frac{π^3}{24}\log2-\fracπ2 \zeta(3)$$
À présent, $$J''_p=\int_{0}^{\frac π 2}x^2(\cos^{p-1}x)\log^2(\cos x)dx=\frac{π}{2^{p+1}}\frac{\Gamma(p)}{\Gamma^2(\frac{p+1}{2})}\psi'(\frac{p+1}{2}) \left ( \left ( [-\log2+\psi(p)-\psi(\frac{p+1}{2})+\frac {\psi''(\frac{p+1}{2})}{\psi'(\frac{p+1}{2})} \right )^2+\psi'(p)-\frac12\psi'(\frac{p+1}{2})+\frac12\frac d {dp}\frac {\psi''(\frac{p+1}{2})}{\psi'(\frac{p+1}{2})} \right ) $$
En louant $p=1$ ,on a
$$\int_{0}^{\fracπ2}x^2\log^2(\cos x)dx=\fracπ {1440}[11π^4+60π^2\log^2 2+720\zeta(3)\log2]$$
Vous pouvez maintenant obtenir l'intégrale souhaitée en utilisant toutes les intégrales ci-dessus, mais c'est une tâche de longue haleine car elle implique d'autres intégrales qui créeront des polylogarithmes et le terme contenant $ \zeta(3)$ va annuler.
Voici quelques généralisations des intégrales log-sinus:
$$\int_0^zx^m\log\left(2\sin\frac{x}{2}\right)\mathrm{d}x=\frac{z^{m+1}}{m+1}\log\left(2\sin\frac{z}{2}\right)-\frac{z^{m+1}}{(m+1)^2}+\frac{2z^{m+1}}{m+1}\sum_{k=1}^{\infty}\frac{\zeta(2k)}{m+2k+1}\left(\frac{z}{2\pi}\right)^{2k} \;\;\;\;\; (|z|<2\pi;m\in\mathbb{N}).$$
$$\int_0^{2\pi}\left(2\sin\frac12 \theta\right)^{\lambda}e^{i\nu\theta}\mathrm{d}\theta=2\pi e^{i\nu\pi}\frac{\Gamma(1+\lambda)}{\Gamma(1+\frac12\lambda+\nu)\Gamma(1+\frac12\lambda-\nu)}.$$
$$2^p\int_0^\pi x^n\log^p(\sin (x))\mathrm{d}x=\pi^n\left(\frac{\pi}{n+1}\frac{\mathrm{d}^p}{\mathrm{d}m^p}\left(\left.\frac{\binom{2m}{m}}{4^m}\right)\right|_{m=0}-\sum_{k=1}^{\infty}\frac{\partial^p}{\partial m^p}\left(\left.\frac{\binom{2m}{m+k}}{4^m}\right)\right|_{m=0}\sum_{j=1}^{\lfloor\frac{n}{2}\rfloor}\frac{n!(-1)^{j+k}}{(n+1-2j)!(2\pi)^{2j-1}k^{2j}}\right).$$
$$\frac{1}{2\pi}\int_0^{2\pi}\left[\log\left(2\sin \frac{x}{2}\right)\right]^n\mathrm{d}x=\frac{(-1)^nn!}{2}a_n\ \ \ \ \ (n\in N_0)\\[2ex] \text{coefficients $une$ are given by:}\\[2ex] \frac{2^{-2z}\Gamma\left(\frac12-z\right)}{\sqrt{\pi}\ \Gamma(1-z)}=\sum_{n=0}^{\infty}a_nz^n$$
Quelques généralisations. Profitez!
$\small \int_0^{\frac{\pi }{2}} x^3 \log ^2(2 \sin (x)) \, dx=-\frac{3}{4}\zeta(\bar 5,1)+\frac{3}{4} \pi ^2 \text{Li}_4\left(\frac{1}{2}\right)-\frac{3 \zeta (3)^2}{8}+\frac{21}{32} \pi ^2 \zeta (3) \log (2)-\frac{187 \pi ^6}{26880}+\frac{1}{32} \pi ^2 \log ^4(2)-\frac{1}{32} \pi ^4 \log ^2(2)$
$\small \int_0^{\frac{\pi }{2}} x^3 \log^3 (2 \sin (x)) \, dx=\frac{9}{4} \zeta(\bar5,1,1)+\frac{9}{4} \pi ^2 \text{Li}_5\left(\frac{1}{2}\right)+\frac{9}{4} \pi ^2 \text{Li}_4\left(\frac{1}{2}\right) \log (2)-\frac{\pi ^4 \zeta (3)}{16}-\frac{759 \pi ^2 \zeta (5)}{512}-\frac{45 \zeta (7)}{512}+\frac{63}{64} \pi ^2 \zeta (3) \log ^2(2)+\frac{3}{40} \pi ^2 \log ^5(2)-\frac{1}{16} \pi ^4 \log ^3(2)$
$\scriptsize \int_0^{\frac{\pi }{2}} x^4 \log ^4(2 \sin (x)) \, dx=-\frac{7}{4} \pi ^3 \zeta(\bar5,1)-15 \pi \zeta(\bar7,1)-6 \pi \zeta(\bar5,1,\bar1,1)+9 \pi \log ^2(2)\zeta(\bar5,1)+18 \pi \log (2) \zeta(\bar5,1,1)-24 \pi \text{Li}_5\left(\frac{1}{2}\right) \zeta (3)-\frac{1}{6} \pi ^5 \text{Li}_4\left(\frac{1}{2}\right)+6 \pi ^3 \text{Li}_6\left(\frac{1}{2}\right)+3 \pi ^3 \text{Li}_4\left(\frac{1}{2}\right) \log ^2(2)+6 \pi ^3 \text{Li}_5\left(\frac{1}{2}\right) \log (2)+\frac{3 \pi ^3 \zeta (3)^2}{8}+\frac{2835 \pi \zeta (3) \zeta (5)}{64}+\frac{1}{5} \pi \zeta (3) \log ^5(2)+\frac{13}{24} \pi ^3 \zeta (3) \log ^3(2)-\frac{31}{8} \pi \zeta (5) \log ^3(2)+\frac{9}{2} \pi \zeta (3)^2 \log ^2(2)-\frac{8}{15} \pi ^5 \zeta (3) \log (2)-\frac{65}{32} \pi ^3 \zeta (5) \log (2)+\frac{465}{16} \pi \zeta (7) \log (2)-\frac{36493 \pi ^9}{4838400}+\frac{1}{12} \pi ^3 \log ^6(2)-\frac{5}{72} \pi ^5 \log ^4(2)+\frac{25 \pi ^7 \log ^2(2)}{1008}$