Extraction de données de table à partir du Web à l'aide de python
J'ai besoin d'extraire une table d'un site Web "https://geniusimpex.org/pakistan-import-data/" qui a des milliers de lignes, donc je voulais automatiser le processus en utilisant bs4 et sélénium mais lorsque j'extrais la table uniquement l'en-tête du tableau est extrait. C'est le code que j'ai utilisé
from bs4 import BeautifulSoup
from urllib.request import urlopen
url = "https://geniusimpex.org/pakistan-import-data/"
html = urlopen(url)
soup = BeautifulSoup(html, 'lxml')
type(soup)
soup.prettify()
print(soup.find_all('tr'))
Il affiche la sortie suivante
[1]:https://i.stack.imgur.com/GItzv.png
Comme vous pouvez le voir, seule la première ligne est extraite. Quelqu'un peut-il me dire pourquoi je ne suis pas en mesure d'extraire le tableau et comment puis-je le faire? Ce sera très utile. Désolé si je ne suis pas clair ou si je ne peux pas expliquer mon problème. C'est la première fois que je pose une question sur le débordement de pile.
Réponses
Les données sont chargées à partir d'une URL externe en tant que Json. Vous pouvez utiliser ce script pour charger les informations:
import json
import requests
url = 'https://geniusimpex.org/wp-admin/admin-ajax.php?action=ge_forecast_list_data&order=asc&offset={offset}&limit=1000'
offset = 0
while True:
data = requests.get(url.format(offset=offset)).json()
# print data to screen:
for row in data.get('rows', []):
for k, v in row.items():
print('{:<30} {}'.format(k, v))
print('-' * 80)
if len(data.get('rows', [])) != 1000:
break
offset += 1000
Impressions:
...
--------------------------------------------------------------------------------
count T
importer_name <span file_id="27893" post_count="T" post_id="2157293">BISMILLAH STEEL FURNACE \n NEAR GRID STATION DEEWAN</span>
goods_description IRON AND STEEL REMELTABLE SCRAP HARMONIZED CODE: 7204.4990 REFERENCE NUMBER:UM/PAK/5146A ITN: X20200629019843 NWT WEIGHT-19.650 MT SHIPPERS LOAD, STOWAGE AND COUNT
hs_code
shipment_port NEWARK APT/NEW
gross_weight 19.65
number_of_packages 1
unit_of_packages PACKAGES
size_of_container 1 X 20FT
imported_from_name SEALINK INTERNATIONAL INC C/O\n UNIVERSAL METALS, ,
bill_of_lading_number SII145321
bill_of_lading_date <span data="10-08-2020">10-08-2020</span>
--------------------------------------------------------------------------------
count T
importer_name <span file_id="27938" post_count="T" post_id="2159597">ASAD SHAHZAD S/O FAQIR ZADA</span>
goods_description 1 USED VEHICLE TOYOTA VITZ CHASSIS NO: KSP130 -2204837
hs_code NA
shipment_port NAGOYA, AICHI
gross_weight .97
number_of_packages 1
unit_of_packages UNIT
size_of_container 1 X 40FT
imported_from_name KASHMIR MOTORS , 3055-9-104 KUZUTSUKA NIIGATA KITA
bill_of_lading_number TA200716H06- 10
bill_of_lading_date <span data="10-08-2020">10-08-2020</span>
--------------------------------------------------------------------------------
...
EDIT: Pour enregistrer au format CSV, vous pouvez utiliser ce script:
import json
import requests
import pandas as pd
url = 'https://geniusimpex.org/wp-admin/admin-ajax.php?action=ge_forecast_list_data&order=asc&offset={offset}&limit=1000'
offset = 0
all_data = []
while True:
data = requests.get(url.format(offset=offset)).json()
# print data to screen:
for row in data.get('rows', []):
all_data.append(row)
for k, v in row.items():
print('{:<30} {}'.format(k, v))
print('-' * 80)
if len(data.get('rows', [])) != 1000:
break
offset += 1000
df = pd.DataFrame(all_data)
df.to_csv('data.csv')
Produit: