Czy liczba splotów węzłów jest niezmienna?
Pytanie: Czy liczba komponentów w splocie zależy od konkretnego osadzenia płaskiego?

Badałem, jak obliczyć liczbę składników („oddzielnych pasm”) w węźle celtyckim na podstawie podstawowej struktury grafu planarnego. (Zobacz relacje między węzłami / łączami i wykresami planarnymi tutaj ).
Najwyraźniej obliczenia dla wykresów ogólnych są trochę skomplikowane; na przykład odniesienie w tym pytaniu wskazuje, że dotyczy munduru$m\times n$ siatka kwadratów, liczba składników wynosi $\mathrm{lcd}(m,n)$.
Zadowoliłoby mnie znalezienie wzoru do obliczania liczby składników („pasm”) lub związku między liczbą pasm a różnymi właściwościami wykresu, takimi jak jego stopień, widmo itp., Nawet jeśli te właściwości byłyby trudne do obliczenia .
Jedno podejście, które obrałem, dotyczy połączonych komponentów: każda oddzielna nić podąża za określoną trajektorią, a połączone komponenty tych trajektorii odpowiadają dokładnie pasmom. Trajektorię można zdefiniować jako odwzorowanie funkcji przejścia (dodatkowa struktura plus) każdej krawędzi na jej następcę; jest to permutacja na (ustrukturyzowanych) krawędziach, których składowymi są cykle.
Funkcję przejścia można zakodować jako własny, wyprowadzony, ukierunkowany graf (podobny do zakodowanej na wykresie mapy ), którego połączonymi składnikami są elementy węzła. Z algebry liniowej wiemy, że liczbę połączonych składowych można odzyskać jako wielokrotność zerowej wartości własnej macierzy sąsiedztwa laplaciańskiej.
Jednak wiem, że ten sam wykres $G$może mieć wiele nieizomorficznych płaskich osadzeń (tj. których dualności są nieizomorficzne). Jak dotąd z mojego doświadczenia wynika, że zmieniło to niektóre właściwości wiązania (takie jak liczba skrętów w każdym komponencie), ale nie liczba komponentów:

Moje pytanie brzmi:
Pytanie: Czy liczba komponentów w splocie zależy od konkretnego osadzenia płaskiego? Jak to udowodnimy?
Moja intuicja mówi, że liczba składników jest niezmienna, ale nie byłem w stanie stworzyć kontrprzykładu ani dowodu, używając mojego powyższego podejścia.
Przypuszczenie: jeśli $G$ jest wykresem, to ma odpowiadający mu węzeł $c$ komponenty, gdzie
$$T_G(-1,-1) = (-1)^{|E(G)|}\cdot (-2)^{c - 1}$$
i $T_G$ jest wielomianem Tutte'a i $|E(G)|$to liczba krawędzi na wykresie. (?)
Odpowiedzi
Pozwolić $D$być schematem łącza. Na przykład,$D$może to być schemat węzła celtyckiego lub łącza przedstawiony w Twoim poście. Pozwolić$G$ być wykresem szachownicy $D$. Wykres$G$ to wykres opisany w pierwszym podpunkcie.
Odpowiedź: Liczba składników$D$ określa abstrakcyjny wykres $G$ i nie zależy od tego, jak $G$ jest osadzony w samolocie.
O ile wiem, po raz pierwszy udowodnił to Michel Las Vergnas w 1979 roku. Pokazał on, że liczba składników $D$ jest określana przez ocenę wielomianu Tutte'a $T_G(-1,-1)$. Ponieważ wielomian Tutte'a nie zależy od konkretnego osadzania$G$, wynik następuje. Odniesieniem do tego artykułu jest
- Las Vergnas Michel. O podziałach Eulera grafów . Teoria grafów i kombinatoryka (Proc. Conf., Open Univ., Milton Keynes, 1978), str. 62–75, Res. Notes in Math., 34, Pitman, Boston, Mass.-London, 1979.
Nie mogłem łatwo znaleźć kopii powyższej pracy, więc oto inny sposób na znalezienie rozwiązania, ze względu na Dana Silvera i Susan Williams ( link do arXiv ). Definiują macierz$Q_2(G)$ których wpisy znajdują się w polu z dwoma elementami $\mathbb{F}_2$następująco. Zarówno wiersze, jak i kolumny macierzy są indeksowane przez wierzchołki$v_1,\dots,v_n$ z $G$. Jeśli$i\neq j$, a później $ij$ wejście $Q_2(G)$ jest liczbą krawędzi między wierzchołkami $v_i$ i $v_j$ (wzięty$\mod 2$). Plik$ii$ wejście $Q_2(G)$ to suma innych wpisów w wierszu $i$ (ponownie zrobione$\mod 2$). Równoważnie możemy powiedzieć, że$ii$ wejście $Q_2(G)$ jest sumą innych wpisów w kolumnie $i$.
W Twierdzeniu 1.1 połączonego artykułu dowodzą, że liczba składników $D$ równa się nieważności $Q_2(G)$. W Uwadze 1.2 zauważają, że implikuje to liczbę składników$D$ jest niezależny od osadzenia płaszczyzny $G$.
Edycja: nie mam dostępu do artykułu Las Vergnas, ale mogę podać inne wyjaśnienie wyniku za pomocą wielomianu Tutte'a i wielomianu Jonesa.
Pozwolić $L$ być zmiennym łączem, niech $D$ być naprzemiennym schematem łącza i niech $G$ być wykresem szachownicy $D$. Następnie wielomian Tutte'a$T_G(x,y)$ z $G$ i wielomian Jonesa $V_L(t)$ z $L$ są powiązane w następujący sposób: $$V_L(t) = f_D(t) T_G(-t,-t^{-1})$$ dla funkcji $f_D(T)$ określony przez $$f_D(t) = (-1)^{w(D)}t^{\frac{1}{4}(|E| - 2(|V|-1)+3w(D))}$$ gdzie $w(D)$ jest wić się $D$, $|E|$ to liczba krawędzi w $G$, i $|V|$ jest liczbą wierzchołków $D$. Zauważ, że$|f_D(1)|=1$, a zatem $|V_L(1)| = |T_G(-1,-1)|$.
Wielomian Jonesa spełnia relację motka $$(t^{\frac{1}{2}}-t^{-\frac{1}{2}})V_{L_0}(t) = t^{-1}V_{L_+}(t) - tV_{L_-}(t)$$ gdzie $L_+,L_-,$ i $L_0$ są jak poniżej.

Oprawa $t=1$ w powyższej relacji skein daje $V_{L_+}(1)=V_{L_-}(1)$. Innymi słowy, wielomian Jones oszacowany na$t=1$ nie zmienia się pod wpływem zmian krzyżujących, a co za tym idzie $V_L(1)=V_{\bigcirc\sqcup\dots\sqcup\bigcirc}(1)$ gdzie $\bigcirc\sqcup\dots\sqcup\bigcirc$ to trywialny link z taką samą liczbą składników jak $L$. Wielomian Jonesa$\bigcirc\sqcup\dots\sqcup\bigcirc$ jest $V_{\bigcirc\sqcup\dots\sqcup\bigcirc}(t) = (-t^{\frac{1}{2}}-t^{-\frac{1}{2}})^{m-1}$ gdzie $m$ jest liczbą składników $\bigcirc\sqcup\dots\sqcup\bigcirc$. A zatem$$|T_G(-1,-1)|=|V_L(1)|=|V_{\bigcirc\sqcup\dots\sqcup\bigcirc}(1)| = 2^{m-1}.$$
Powyższy przypadek obsługuje kiedy $L$jest naprzemiennie. Jeśli$L$jest niezmienny, należy postępować w następujący sposób. Pozwolić$D$ być dowolnym schematem $L$. Definiować$D_{\text{alt}}$ być diagramem z tym samym cieniem co $D$ ale których skrzyżowania są zmieniane na przemienne i określają $L_{\text{alt}}$ być łączem, którego diagram jest $D_{\text{alt}}$. Zwróć na to uwagę$D$ i $D_{\text{alt}}$ mają ten sam wykres szachownicy $G$. Z powyższego argumentu wynika, że$|T_G(-1,-1)|=2^{m-1}$ gdzie $m$ jest liczbą składników $L_{\text{alt}}$. Od$L_{\text{alt}}$ i $L$ mają taką samą liczbę składników, wynik jest następujący $L$ także.