5 maneras en que los biocombustibles producidos de manera responsable benefician a todos

Sep 04 2012
La próxima vez que reposte en la bomba, tómese un minuto para considerar de dónde proviene ese gas y cómo podemos producirlo de manera más responsable. Aquí hay 5 formas en que los biocombustibles ecológicos ayudan al planeta y a las grandes empresas.
¿De dónde viene su gasolina?

Bombear gasolina es un excelente momento para la contemplación existencial. La próxima vez que llene el tanque, piense de dónde vino esa gasolina. ¿Arabia Saudita? No, retrocedamos aún más: su gasolina comenzó su vida hace 300 millones de años como una hoja de algas antiguas o un tiburón prehistórico con una afección cardíaca. Cuando ese tiburón murió y esas algas se secaron, se descompusieron en el fondo del océano. Durante milenios, a medida que más y más materia orgánica se asentaba sobre el tiburón y las algas, la presión y el calor convertían el carbono de esas criaturas muertas en la sustancia viscosa que llamamos petróleo crudo.

Ahí es donde entra Arabia Saudita. El crudo antiguo se extrae de la tierra, se envía en un superpetrolero a una refinería en Texas y se convierte en gasolina (y combustible diesel y combustible para aviones y la tina ocasional de vaselina).

Mientras contempla este ciclo de producción de 300 millones de años, considere la energía que se requirió para triturar ese carbono en crudo, y luego el combustible requerido para cavar los pozos de petróleo, bombear el material, enviarlo al otro lado del mundo, refinarlo. , cárguelo en trenes, luego en camiones, y finalmente llegue a su estación de servicio local. ¿Debe haber formas más directas, energéticamente eficientes y respetuosas con el medio ambiente de transformar la materia a base de carbono en combustible? Los hay, y se llaman biocombustibles.

Los biocombustibles son cualquier forma de energía derivada de una fuente vegetal. Los biocombustibles más comunes son el etanol , un combustible alcohólico elaborado a partir de la fermentación de un material de origen azucarado como el maíz o la caña de azúcar, y el biodiésel , un combustible diésel elaborado a partir de aceites y grasas vegetales en lugar de petróleo crudo. Cuando la materia prima para los biocombustibles se cultiva y cosecha de manera responsable y sostenible, los beneficios de los biocombustibles impactan más que el precio en el surtidor. Los biocombustibles tienen el potencial de reducir la contaminación, reducir la pobreza global y convertir millones de toneladas de desechos en energía de combustión limpia.

Aquí está nuestra lista de las cinco formas ingeniosas en que los biocombustibles producidos de manera responsable pueden beneficiar a todos, comenzando con un cambio de etanol a base de maíz a "grassoline".

Contenido
  1. Gas de hierba
  2. Llénalo con escoria de estanque
  3. Volando alto (y barato) con biocombustibles
  4. Poniendo lo "Eco" en Impacto Económico
  5. carros de basura

5: Gas de hierba

La producción de etanol ha provocado un acalorado debate entre los científicos ambientales y los agricultores. Es cierto que el etanol se quema de forma más limpia que la gasolina convencional y emite menos dióxido de carbono y benceno al aire. También es cierto que el maíz y otras plantas utilizadas como materia prima para el etanol absorben el dióxido de carbono atmosférico en su etapa de crecimiento, lo que reduce en gran medida los niveles de dióxido de carbono durante todo el ciclo de vida del combustible [fuente: Departamento de Energía de EE . UU .]. Pero la dependencia del maíz como materia prima de etanol en los Estados Unidos ha creado problemas, tanto con el suministro de alimentos como con el consumo de combustibles fósiles.

Los seres humanos consumen directamente solo dos de cada 10 mazorcas de maíz cultivadas en los EE. UU., ya sea como maíz fresco, jarabe de maíz, harina de maíz u otros derivados del maíz. Las otras ocho mazorcas tradicionalmente se convirtieron en alimento para ganado como vacas, cerdos y pollos, pero eso fue antes del auge del etanol. Gracias en parte a los subsidios del gobierno, se cultivó más maíz para etanol desde agosto de 2011 hasta julio de 2012 que para ganado [fuente: Lott ]. Esa fue la primera vez en la historia de la agricultura estadounidense. En un año en que las condiciones de sequía redujeron el rendimiento total de maíz, los críticos culpan a la producción de etanol por los precios de los alimentos aún más altos [fuente: McDonald ].

El maíz y la soja, otra materia prima popular para el etanol, también requieren grandes cantidades de energía de combustibles fósiles para producir. Los tractores queman una parte justa de los combustibles fósiles , pero el mayor culpable es el fertilizante sintético. El fertilizante nitrogenado, por ejemplo, requiere 1,5 toneladas (1360,7 kilogramos) de combustibles fósiles, generalmente carbón y gas natural, para producir una tonelada (907,18 kilogramos) de nitrógeno [fuente: Oliver ].

Afortunadamente, los investigadores y los agricultores han identificado una serie de fuentes no alimentarias de materia prima de etanol que pueden crecer prácticamente en cualquier lugar sin necesidad de fertilizantes adicionales. En los EE. UU., las mejores opciones son los pastos altos como el switchgrass y el miscanthus. Estos pastos crecen más de 10 pies (3,05 metros) de altura en hebras gruesas y son perennes , lo que significa que se pueden cosechar en el otoño y volver a crecer en la primavera. Menos plantaciones significa menos combustible fósil quemado en el tractor. En climas tropicales como Hawái y el sudeste asiático, los investigadores están experimentando con hierba bana, sorgo dulce y una nuez de aceite no comestible llamada jatropha [fuente: Smith ].

Estos pastos pueden crecer en suelos pobres con poca irrigación o aporte de fertilizantes. Y tienen un gran impacto en la biomasa. Según las pruebas realizadas por el Laboratorio Nacional de Argonne, el pasto varilla tiene una relación de producción de energía de 1 a 10, lo que significa que cada unidad de energía consumida para producir etanol de pasto varilla da como resultado 10 unidades de energía disponible. El etanol de maíz, por otro lado, produce solo 1,36 unidades de producción de energía por cada unidad de entrada de energía [fuente: Wang ].

El cambio a " grassoline " es ingenioso porque no compite con los cultivos alimentarios existentes, se puede cultivar en tierras marginales, no depende de fertilizantes sintéticos y produce una cantidad mucho mayor de energía por unidad de biomasa. Eso ayuda a mantener bajos los precios de los alimentos, los costos del combustible y los niveles de contaminación bajos, ¡una victoria para todos!

4. Llénalo con escoria de estanque

La escoria del estanque puede parecer asquerosa, pero ¿quién dijo que el futuro de los biocombustibles tenía que ser bonito?

Starting as early as the 1950s, alternative energy researchers have had their eyes on algae [source: Keune]. Mature algae -- that slimy green goo also known as pond scum -- are rich with lipids, a type of molecule that includes fats. Those lipids can be extracted and turned into biodiesel. The remaining dry algal matter can be fermented and processed into ethanol [source: Haag]. Two fuels for the price of one!

Algae need three things to grow: water, sunlight and carbon dioxide. Otherwise, they're not very picky. Algae can grow in salt or fresh water, even in wastewater from sewage treatment facilities or dairy farms. The key to growing great algae is lots of available carbon dioxide in the water. Naturally occurring ponds don't usually contain enough carbon dioxide to maintain healthy growth rates, but researchers have figured out an ingenious solution: redirecting carbon dioxideemissions from coal-fired power plants into the algal ponds. Not only does algal biodiesel burn cleaner than conventional gas, but it eats up coal emissions.

Under the right conditions, algal colonies can double in mass overnight, and an impressive 50 percent of that mass is oil. To compare, the second best oil-producing plant is the oil-palm tree, which is only 20 percent oil [source: Haag]. The U.S. government has invested tens of millions of dollars to help bring algal fuels to market, but current production methods still cost a prohibitive $8 a gallon at the pump. The hope is that with further investment by the United States military and energy giants like Exxon Mobil and Chevron, algae will become both an environmental and economic superfuel .

3. Flying High (And Cheap) With Biofuels

The U.S. military is the world's largest gas guzzler, buying and burning through more than 8 billion gallons of fuel per year [source: National Energy Technology Laboratory]. Jet fuel is a particularly expensive resource and the military is always looking for ways to cut the cost of maintaining its airborne fleet. One exciting possibility is the increased use of biofuels in the jet fuel mix.

During World War II, German scientists developed a process of making liquid fuel from coal. Known as Fischer-Tropsch (F-T) fuels, they can be made from coal, natural gas or biomass [source: Ryan]. The U.S. military is particularly interested in biomass as a fuel source because it decreases reliance on foreign oil, thereby increasing energy security in the event of an international crisis.

But the focus on biofuels is about more than energy security or "greening up" the military. It's also a smart business decision. In a 2012 press conference, Assistant Secretary of the Air Force Terry Yonkers explained that military testing shows that biofuels burn cleaner and cooler in jet engines. That increases overall engine life by a factor of ten, greatly reducing repair and replacement costs [source: Ryan].

Another benefit of biofuels is that they have less mass than fossil fuels, meaning that bio-based jet fuel weighs less than conventional jet fuel. This could have big implications for commercial aircraft, where the weight of the airplane is reflected in ticket prices. A greener, more secure military plus cheaper flights to Cleveland? Another biofuel win for everyone.

2: Putting the "Eco" in Economic Impact

A rural farmer could use a homegrown corn crop to lift his family out of poverty and help save the world at the same time. Pretty cool, right?

Slightly less than half of the world's population lives in rural areas, but they make up 70 percent of the world's poor [source: The World Bank]. For decades, the plight of poor rural farmers has been exacerbated by low food prices. The global market for food staples like wheat and corn was dominated by the United States and Europe, where government subsidies kept prices unnaturally low. A country like Mexico, which used to feed itself on its own corn, now imports 12 million tons (10.88 billion kilograms) a year from the U.S., where corn prices are lower [source: Rodriguez].

Oil is the same. Of the world's 47 poorest countries, 38 import more oil than they produce domestically and 25 of those 38 countries import every drop of oil they consume [source: Worldwatch Institute]. With an overreliance on both foreign-grown food and foreign oil, the rural poor in developing nations are dangerously exposed to price spikes. When food and oil prices go up, as they have dramatically in recent years, they suffer the consequences without any of the benefits.

Homegrown biofuels have the potential to reverse the poverty rate in developing nations. Think of the hundreds of millions of farmers who can barely subsist on the market price of their food crops. By growing ethanol and biodiesel feedstock, they will receive a fair price for a hot commodity. At the same time, energy entrepreneurs in their same country can build the biofuels infrastructure to generate homegrown energy. A 2010 report from the International Food Policy Research Institute concluded that increased biofuel production in countries like Tanzania and Mozambique could decrease the poverty rate in those countries by 5 percent by 2020 [source: Arndt et al].

Lower energy costs, better wages and reduced rural poverty -- another biofuel win for everyone.

1: Garbage Cars

The average American generates 4.43 pounds (2 kilograms) of garbage every day. As a nation, we tossed out roughly 250 million tons (227 billion kilograms) of trash in 2010, from food waste to construction debris to outdated iPhones [source: EPA]. What if we could divert all of that waste from the landfill and convert it into usable energy? Doc Brown did it in "Back to the Future" -- feeding his DeLorean's cold fusion reactor with banana peels and beer -- and thanks to a process called gasification, so can we.

Gasification uses heat and pressure to crack the molecular compounds of almost any carbon-based material into a substance called synthetic gas, or syngas. All around the world, cities are replacing their landfills with gasification plants. In Edmonton, the capital of the Canadian province of Alberta, the city is building a facility that will convert 100,000 tons (90 million kilograms) of municipal waste into 9.5 million gallons (35,961 cubic liters) of biofuel annually [source: City of Edmonton].

Inside the Edmonton facility, scheduled to open in 2013, municipal waste (garbage) will be sorted by type: compostable organic waste, recyclable material and waste products that would normally be sent to the landfill . Those leftovers will be shredded into a fine pulp and fed into the gasifier, where incredible heat — not fire — liquefies the material into carbon monoxide (CO) and hydrogen (H2), the major elements of syngas. The syngas will then pass through a catalytic converter where the molecules are rearranged to form ethanol, a standard biofuel, and methanol [source: Edmonton Biofuels].

From California to Finland, more of these plants are popping up to process wood-based waste and plain old garbage. Could Doc's DeLorean be far off? Well, yes. But when millions of tons of trash become millions of gallons of gas, that's another biofuel win for everyone.

For lots more information on biofuel, grassoline , garbage cars and other alternative fuels, explore the related links on the next page.

Lots More Information

Author's Note: 5 Ways Responsibly Produced Biofuels Benefit Everyone

It was inspiring to research this article and learn about all of the innovative energy technologies being implemented around the world. It's easy to get pessimistic about fossil fuels and climate change and gas prices, but it's exciting to know that there are smart minds at work developing the technologies that can turn wild grass and trash into fuel for my Ford. I hope that all of the potential benefits of a global switch to biofuels are realized in my lifetime. It would make this gas-guzzler proud.

Related Articles

  • How Garbage-powered Cards Could Work
  • How Gasification Works
  • How can algae be converted into biofuel?
  • What is a synfuel?
  • Grassoline: Can we fuel cars with grass?
  • 10 Alternative Fuel Ideas Than Never Made It Out of the Lab
  • Could salt water fuel cars?

Sources

  • Arndt, Channing; Pauw, Carl; Thurlow, James. International Food Policy Research Institute. "Biofuels and Economic Development in Tanzania." April 2010 (August 30, 2012) http://www.ifpri.org/sites/default/files/publications/ifpridp00966.pdf
  • City of Edmonton. "Waste-to-Biofuels Facility" (August 30, 2012) http://www.edmonton.ca/for_residents/garbage_recycling/biofuels-facility.aspx
  • Edmonton Biofuels. "Technology" (August 30, 2012) http://www.edmontonbiofuels.ca/technology.htm?yams_lang=en
  • Haag, Amanda Leigh. Popular Mechanics. "Pond-Powered Biofuels: Turning Algae into America's New Energy." March 29, 2007 (August 30, 2012) http://www.popularmechanics.com/science/energy/biofuel/4213775
  • Keune, Nash. National Review Online. "Algae: Fuel of the Future?" March 8, 2012 (August 30, 2012) http://www.nationalreview.com/articles/292913/algae-fuel-future-nash-keune
  • Lott, Melissa C. Scientific American. "The U.S. Now Uses More Corn for Fuel Than for Feed." October 7, 2011 (August 30, 2012) http://blogs.scientificamerican.com/plugged-in/2011/10/07/the-u-s-now-uses-more-corn-for-fuel-than-for-feed/
  • McDonald, Kay. CNN. "Paying more for food? Blame the ethanol mandate." August 20, 2012 (August 30, 2012) http://www.cnn.com/2012/08/20/opinion/mcdonald-corn-ethanol/index.html
  • National Energy Technology Laboratory. "Fischer-Tropsch Fuels" (August 30, 2012) http://www.netl.doe.gov/publications/factsheets/rd/R&D089.pdf
  • Oliver, Rachel. CNN. "All About: Food and Fossil Fuels." March 17, 2008 (August 30, 2012) http://edition.cnn.com/2008/WORLD/asiapcf/03/16/eco.food.miles/
  • Rodriguez, Carlos Manuel. Bloomberg. Mexico Corn Imports to Surge to Record As Output Outlook Cut." August 12, 2011 (August 30, 2012) http://www.bloomberg.com/news/2011-08-12/mexico-corn-imports-to-surge-to-record-as-output-outlook-cut-2-.html
  • Ryan, Margaret. AOL Energy. "Biofuels: Better for Airplanes, Too?" June 13, 2012 (August 30, 2012) http://energy.aol.com/2012/06/13/biofuels-better-for-airplanes-too/
  • Smith, Dave. Big Island Now. "UH Gets Federal Grant for Biofuel Research." August 3, 2012 (August 30, 2012) http://bigislandnow.com/2012/08/03/uh-gets-federal-grant-for-biofuel-research/
  • U.S. Department of Energy. Alternative Fuels Data Center. "Ethanol Benefits and Considerations" (August 30, 2012) http://www.afdc.energy.gov/fuels/ethanol_benefits.html
  • U.S. Environmental Protection Agency. "Municipal Solid Waste Generation, Recycling and Disposal in the United States: Facts and Figures for 2010" (August 30, 2012)http://www.epa.gov/osw/nonhaz/municipal/pubs/msw_2010_rev_factsheet.pdf
  • Wang, Michael. Center for Transportation Research. "Energy and Greenhouse Gas Emissions Impacts of Fuel Ethanol." August 23, 2005 (August 30, 2012) http://www.oregon.gov/energy/RENEW/Biomass/docs/FORUM/NCGA_Ethanol_Meeting_050823.ppt
  • The World Bank. "Agriculture and Rural Development" (August 30, 2012) http://data.worldbank.org/topic/agriculture-and-rural-development
  • Instituto de Vigilancia Mundial. "Alimentos y combustibles: los biocombustibles podrían beneficiar a las personas desnutridas del mundo" (30 de agosto de 2012) http://www.worldwatch.org/node/5300