
Am Anfang war Schlamm. Die frühesten menschlichen Behausungen bestanden aus nichts anderem als Lehm- und Strohziegeln, die in der Sonne gebacken wurden. Die alten Römer waren die ersten, die mit Beton experimentierten und Kalk und Vulkangestein mischten, um majestätische Bauwerke wie das Pantheon in Rom zu bauen, immer noch die größte unverstärkte Betonkuppel der Welt [Quelle: Pruitt ].
Im Laufe der Jahrhunderte haben Ingenieure und Architekten immer wieder neue Wege gefunden, um mit wegweisenden Materialien wie Stahlträgern, erdbebensicheren Fundamenten und Vorhangfassaden aus Glas höhere, stärkere und schönere Kreationen zu bauen.
Doch wie sieht die Zukunft der Bautechnik aus? Wird der Tag kommen, an dem lärmende Bautrupps durch Schwärme autonomer Nanobots ersetzt werden? Werden sich die Risse in Betonfundamenten eines Tages wie durch ein Wunder heilen oder Tankstellen durch Elektroautos ersetzt werden, die auf selbstladenden Straßen fahren?
Lesen Sie weiter für unsere vollständige Liste der 10 aufregendsten Bauinnovationen der nahen Zukunft. Einige sind sogar noch heute im Einsatz.
- Selbstheilender Beton
- Kohlenstoff-Nanoröhren
- Transparentes Aluminium
- Durchlässiger Beton
- Aerogel-Isolierung
- Temperaturreaktive Fliesen
- Robot Swarm Construction
- 3-D Printed Houses
- Smart Roads
- Building With CO2
10: Self-healing Concrete

Concrete is the single most widely used construction material in the world [source: Crow]. In fact, it is the second-most consumed substance on Earth, after water [source: Rubenstein]. Think of all the concrete homes, office buildings, churches and bridges built each year. Concrete is cheap and widely adaptable, but it's also susceptible to cracking and deterioration under stresses like extreme heat and cold.
In the past, the only way to fix cracked concrete was to patch it, reinforce it, or knock it down and start from scratch. But not anymore. In 2010, a graduate student and chemical engineering professor at the University of Rhode Island created a new type of "smart" concrete that "heals" its own cracks. The concrete mix is embedded with tiny capsules of sodium silicate. When a crack forms, the capsules rupture and release a gel-like healing agent that hardens to fill the void [source: URI].
This is not the only method of self-healing concrete. Other researchers have used bacteria or embedded glass capillaries or polymer microcapsules to achieve similar results. However, the Rhode Island researchers believe their method is the most cost-effective.
Prolonging the life of concrete could have huge environmental benefits. Worldwide concrete production currently accounts for 5 percent of global carbon dioxide emissions [source: Rubenstein]. Smart concrete would not only make our structures safer, but also cut back on greenhouse gasses.
9: Carbon Nanotubes

A nanometer is one-billionth of a meter. That's impossibly small. A single sheet of paper is 100,000 nanometers. Your fingernail grows approximately 1 nanometer every second. Even a strand of your DNA is 2.5 nanometers wide [source: NANO.gov]. To construct materials at the "nano" scale would seem impossible, but using cutting-edge techniques like electron-beam lithography, scientists and engineers have successfully created tubes of carbon with walls that are only 1 nanometer thick.
When a larger particle is divided into increasingly smaller parts, the proportion of its surface area to its mass increases. These carbon nanotubes have the highest strength-to-weight ratio of any material on Earth and can be stretched a million times longer than their thickness [source: NBS]. Carbon nanotubes are so light and strong that they can be embedded into other building materials like metals, concrete, wood and glass to add density and tensile strength. Engineers are even experimenting with nanoscale sensors that can monitor stresses inside building materials and identify potential fractures or cracks before they occur [source: NanoandMe.org].
8: Transparent Aluminum

For decades, chemical engineers have dreamed of a material that combines the strength and durability of metal with the crystal-clear purity of glass. Such a "clear metal" could be used to construct towering glass-walled skyscrapers that require less internal support. Secure military buildings could install thin transparent metal windows impervious to the highest-caliber artillery fire. And think of the monstrous aquarium you could build with this stuff!
Back in the 1980s, scientists began experimenting with a novel type of ceramic made from a powdery mix of aluminum , oxygen and nitrogen. A ceramic is any hard, usually crystalline material that's made by a process of heating and cooling. In this case, the aluminum powder is placed under immense pressure, heated for days at 2,000 degrees C (3,632 degrees F) and finally polished to produce a perfectly clear, glass-like material with the strength of aluminum [source: Ragan].
Known as transparent aluminum , or ALON, the space-age material is already being used by the military for making armored windows and optical lenses.
7: Permeable Concrete

During a heavy storm, sheets of rainwater pour down on roadways, sidewalks and parking lots, scouring up surface debris and pollutants and washing potentially toxic chemicals like gasoline directly into sewers and streams. The U.S. Environmental Protection Agency (EPA) identifies storm water runoff in paved urban areas as a major source of water pollution.
Nature has its own way of filtering out toxins from rainwater . Soil is a magnificent filter for metals and other inorganic materials. As rainwater passes down through soil levels, microorganisms and plant roots absorb excess chemicals [source: ESA]. Knowing this, engineers have created a new type of permeable concrete that allows rainwater to pass right through pavement and let nature do its work.
Permeable or pervious concrete is made with larger grains of rock and sand, leaving between 15 and 35 percent of open space in the pavement [source: EPA]. Slabs of permeable concrete are laid atop gravel or another porous base material that lets rainwater settle to the soil substrate beneath. Permeable concrete is an excellent replacement for asphalt in parking lots. Not only does it significantly decrease runoff, but also the lighter color of concrete reflects sunlight and stays cooler in the summer.
6: Aerogel Insulation

If Michelangelo's famous marble statue of David was made of aerogel , it would weigh only 4 pounds (2 kilograms)! Aerogel is one of the least dense substances on Earth, a foam-like solid material that holds its shape despite being almost as light as air. Some types have densities just three times heavier than air, but typically aerogels are 15 times heavier than air [source: Aerogel.org].
You might think of gel as a wet substance, such as hair gel. But aerogel is made by removing the liquid from a gel. All that's left is the silica structure — which is 90 to 99 percent air. Aerogel is almost weightless, but can be spun out into thin sheets of aerogel fabric. In construction projects, aerogel fabric demonstrates "super-insulating" properties. Its porous structure makes it difficult for heat to pass through. In tests, aerogel fabric had two to four times the insulating power of traditional fiberglass or foam insulation [source: LaMonica]. Once the price comes down, it could be widely used in construction.
5: Temperature-Reactive Tiles

If you were alive in 1991 and lived aboveground, odds are good that you owned a Hypercolor T-shirt. By some scientific miracle — a miracle called thermochromic dye — the folks at Hypercolor made T-shirts that changed color with your body temperature. The commercials made it look super cool and sexy; your girlfriend could put her hot hands on your chest and leave a glowing mark. But in reality the hottest parts of your body are usually your armpits . Glowing armpits = not super sexy.
Today, a company called Moving Color manufactures glass decorative tiles coated with thermochromic paint that "come alive" with changing surface temperatures. At room temperature, the tiles are a glossy black, but when you touch the tiles — or hit them with direct light or warm water — the colors transform like the Northern Lights into iridescent blues, pinks and greens. The coolest application has to be the color-shifting shower. The good news for Moving Color is that houses don't have armpits.
4: Robot Swarm Construction

One of nature's most ingenious builders is the humble termite . With a brain the size of a grain of sand, it works alongside hundreds of thousands of mound-mates to build colossal and complex mud structures. Termites captured the attention of Harvard robotics researchers because the insects don't take orders from some central termite architect. Each termite works alone according to genetically programmed rules of behavior. Together, as a swarm of single-minded individuals, they create monumental works of mud.
Inspired by termites, researchers at Harvard's Self-organizing Systems Research Group have built small construction robotics programmed to work together as a swarm. The four-wheeled robots can build brick-like walls by lifting each brick, climbing the wall and laying the brick in an open spot. They have sensors to detect the presence of other robots and rules for getting out of each other's way. Like termites, no one is "controlling" them, but they are programmed to collectively build a specific design.
Imagine the applications: Swarming robots building levee walls along a dangerously flooded coastline; thousands of tiny robots constructing a space station on Mars; or deep underwater gas pipelines being assembled by swimming swarms of bots. A similar experiment used a swarm of autonomous flying robots to build an artfully undulating brick tower [source: Liggett].
3: 3-D Printed Houses

3-D printing has finally gone mainstream. Makerbot is selling nifty (and just about affordable) desktop machines that can print out fully rendered 3-D plastic toys, jewelry, machine parts and artificial limbs. But what if you want to print something bigger than a shoebox? Could you actually build a 3-D printer large enough to print out a plastic house?
The answer is "yes." A Dutch architecture firm has launched an ambitious public art project to build a 3-D printed house. But first, they had to build one of the world's largest 3-D printers, called the Kamermaker or "room maker." Using the same plastic source material as small-scale 3-D printers, the Kamermaker can print out large LEGO-like plastic components that will be assembled into individual rooms of the house. The rooms will then lock together — again, think LEGO — with the printed exteriors of the home designed to look like a traditional Dutch canal house.
Meanwhile, a Chinese construction company is building houses using a giant 3-D printer that sprays layers of cement and construction waste to assemble the homes. The company says the houses will cost less than $5,000 each, and it can produce up to 10 of them in a day [source: Guardian].
2: Smart Roads

Google is hogging all of the limelight with its self-driving car, but what good are smart cars if they still have to drive on "dumb" roads?
Eine der aufregendsten neuen Ideen ist eine Fahrbahn, die als Ladegerät für Elektrofahrzeuge dient. Ein neuseeländisches Unternehmen hat bereits ein großes „Power Pad“ gebaut, das ein geparktes Elektroauto drahtlos aufladen kann [Quelle: Barry ]. Der nächste Schritt besteht darin, die kabellose Ladetechnologie in den Straßenbelag einzubetten, damit Elektrofahrzeuge unterwegs aufgeladen werden können. Keine Tankstellen mehr!
Andere faszinierende Ideen, die eines Tages wahr werden könnten, sind Straßenoberflächen, die Sonnenlicht absorbieren, um Strom zu erzeugen, oder – noch cooler – die Straße mit piezoelektrischen Kristallen einzubetten, die die Vibrationen vorbeifahrender Autos einfangen und in nutzbare Energie umwandeln [Quelle: Zero to 60 Times ].
1: Bauen mit CO2

Kohlendioxid (CO2), das von Kraftwerken und Autos ausgestoßen wird, ist die größte Einzelquelle für vom Menschen verursachte Treibhausgase. Jedes Jahr pumpen wir mehr als 30 Milliarden Tonnen (33 Milliarden Tonnen) CO2 in die Atmosphäre, wo es die schädlichen Auswirkungen der globalen Erwärmung beschleunigt [Quelle: Trafton ]. Während der Energiesektor damit experimentiert, CO2-Emissionen im Untergrund einzufangen oder zu „binden“, hat ein Forscherteam des Massachusetts Institute of Technology (MIT) erfolgreich gentechnisch veränderte Hefe verwendet, um CO2-Gas in feste Baumaterialien auf Kohlenstoffbasis umzuwandeln.
Wie das Harvard-Termitenteam ließen sich auch die MIT-Forscher von der Natur inspirieren, diesmal von der Abalone. Wie andere Krebstiere kann Abalone aus dem Ozean stammendes CO2 und Mineralien in Kalziumkarbonat umwandeln, um ihre steinharten Panzer aufzubauen. Die Forscher isolierten das Enzym, das Abalone zur Mineralisierung des CO2 verwenden, und konstruierten eine Charge Hefe, um es zu produzieren. Ein Becher voller gentechnisch veränderter Hefe kann 2 Pfund (1 Kilogramm) festes Karbonat aus nur 1 Pfund (0,5 Kilogramm) CO2 produzieren [Quelle: Trafton ]. Stellen Sie sich vor, wie viele Kohlenstoffziegel sie mit 30 Milliarden Tonnen CO2 herstellen könnten.
Für viele weitere Listen weltverändernder Erfindungen und futuristischer Vorhersagen schauen Sie sich die verwandten Links auf der nächsten Seite an.
Viele weitere Informationen
Anmerkung des Autors: 10 futuristische Baumaterialien
Es ist gleichzeitig aufregend und beängstigend, einem Schwarm autonom fliegender Roboter dabei zuzusehen, wie sie etwas Schönes oder ein selbstfahrendes Roboterauto bauenfahren Sie nahtlos zum Taco Bell Drive-Thru. Wir erschaffen Maschinen, deren künstliche Intelligenz bald mit unserer eigenen „organischen“ Intelligenz konkurrieren wird. In 99 Prozent der Fälle wird dies ausnahmslos eine gute Sache sein, die Straßen sicherer machen – die Google-Autos haben noch keinen Unfall oder ein Ticket bekommen – und Aufgaben automatisieren, die früher Hunderte von Stunden gefährlicher menschlicher Arbeit erforderten. Aber wenn Hollywood uns etwas gelehrt hat, dann, dass intelligente Maschinen irgendwann gegen uns rebellieren und unsere Organe für Batteriestrom ernten werden. Ich hoffe nur, dass unser Wettlauf um wissenschaftlichen Fortschritt durch einen starken ethischen „Aus“-Schalter in Schach gehalten wird. Sicherheitshalber trenne ich nachts alle meine "intelligenten" Geräte. Ich mag meine Milz genau dort, wo sie ist, danke.
Zum Thema passende Artikel
- 10 futuristische Vorhersagen in der Welt der Technologie
- Wie transparente Aluminiumrüstung funktioniert
- 5 futuristische Trends im Supercomputing
- Wie thermochrome Tinte funktioniert
- 10 Albtraumszenarien aus dem Internet der Dinge
- 5 zukünftige Heimtechnologien, die Sie lieben werden
Quellen
- Aerogel.org. "Was ist Aerogel?" (21. Mai 2014) http://www.aerogel.org/?p=3
- Barry, Keith. „Lassen Sie das Kabel weg, lassen Sie Ihr Elektrofahrzeug auf der Straße aufladen.“ Verdrahtet. 22. Nov. 2010 (21. Mai 2014) http://www.wired.com/2010/11/ditch-the-cord-let-the-road-charge-your-ev/
- Ökologische Gesellschaft von Amerika. „Water Purification Fact Sheet“ (21. Mai 2014) http://www.esa.org/ecoservices/comm/body.comm.fact.wate.html
- LaMonica, Martin. "High-Tech-Aerogele hüllen Häuser mit Isolierung ein." CNET. 2. Februar 2012. (21. Mai 2014) http://www.cnet.com/news/high-tech-aerogels-wrap-homes-with-insulation/
- Liggett, Brit. „Der erste von fliegenden Robotern gebaute Turm der Welt steht in Frankreich.“ bewohnen. 3. Januar 2012. (21. Mai 2014) http://inhabitat.com/the-worlds-first-tower-built-by-flying-robots-rises-in-france/
- Nano & ich. "Nano im Bau." (21. Mai 2014) http://www.nanoandme.org/nano-products/construction/
- NBS. "Nanotechnologie im Bauwesen." (21. Mai 2014) http://www.thenbs.com/topics/ConstructionProducts/articles/nanotechnologyInConstruction.asp
- Pruitt, Sarah. "Die Geheimnisse des antiken römischen Betons." Geschichte. 21. Juni 2013. (21. Mai 2014) http://www.history.com/news/the-secrets-of-ancient-roman-concrete
- Ragan, SeanMichael. "Durchsichtiges Aluminium." 17. Januar 2012. (21. Mai 2014) http://makezine.com/2012/01/17/transparent-aluminum/
- Rubenstein, Madeleine. "Emissionen aus der Zementindustrie." Zustand des Planeten. 9. Mai 2012. (21. Mai 2014) http://blogs.ei.columbia.edu/2012/05/09/emissions-from-the-cement-industry/
- Traton, Anne. "Kohlendioxid sinnvoll nutzen." MIT-Nachrichten. 22. Sept. 2010. (21. Mai 2014) http://newsoffice.mit.edu/2010/belcher-carbon-0922
- US-Umweltschutzbehörde. "Der neue grüne Parkplatz der EPA ermöglicht es Wissenschaftlern, durchlässige Oberflächen zu untersuchen, die der Umwelt helfen können." 28. Okt. 2009. (21. Mai 2014) http://yosemite.epa.gov/opa/admpress.nsf/d10ed0d99d826b068525735900400c2a/61b216a56ea5e4ac8525765d0056a5a7!OpenDocument
- US-Umweltschutzbehörde. "Durchlässiger Betonbelag." Nationales System zur Beseitigung von Schadstoffemissionen. (21. Mai 2014) http://cfpub.epa.gov/npdes/stormwater/menuofbmps/index.cfm?action=browse&Rbutton=detail&bmp=137
- Die Nationale Nanotechnologie-Initiative der Vereinigten Staaten. "Größe der Nanoskala." (21. Mai 2014) http://www.nano.gov/nanotech-101/what/nano-size
- Die Universität von Rhode Island. "URI-Forschung zu selbstheilendem Beton liefert kostengünstiges System zur Verlängerung der Lebensdauer von Bauwerken." 25. Mai 2010. (21. Mai 2014) http://www.uri.edu/news/releases/?id=5359