Wie die Wärmebildtechnik funktioniert

May 21 2013
Thermografiekameras erkennen Infrarotlicht (oder Wärme), das für das menschliche Auge unsichtbar ist. Wie können die Sensoren der Kamera die Temperatur aus der Ferne erfassen und wie kann die Technologie genutzt werden?
Wärmebild einer Hand mit Pflaster darauf.

Nach den Bombenanschlägen auf den Boston-Marathon war die Fahndung zur Beendigung aller Fahndungen im Gange. Es gab nur ein Problem – trotz ihres massiven Vorteils an Arbeitskräften und Feuerkraft konnten die Behörden die Täter anscheinend nicht finden.

Als sie von einem misstrauischen Hausbesitzer darauf hingewiesen wurden, beschränkten sie ihre Suche schließlich auf ein großes, überdachtes Boot, das in einer Einfahrt stand. Da der Verdächtige nicht sichtbar war, konnten sie weder seine genaue Position im Boot visuell bestätigen, noch konnten sie sehen, ob er bewaffnet war. Die Beamten arbeiteten im Dunkeln, blind für Gefahren. Dann half eine Thermografiekamera , den Tag zu retten.

Diese Kamera , die an einem Hubschrauber montiert war, der über ihnen kreiste, zeigte deutlich den Mann, der bäuchlings auf dem Boden des Bootes lag. Es zeigte sich auch, dass die Person lebte und sich bewegte. Mithilfe der visuellen Informationen des Hubschraubers konnte sich ein SWAT-Team schließlich dem Boot nähern und den Verdächtigen festnehmen.

Eine Thermografiekamera (oder Infrarotkamera ) erkennt Infrarotlicht (oder Wärme), das für das menschliche Auge unsichtbar ist. Diese Eigenschaft macht diese Kameras unglaublich nützlich für alle Arten von Anwendungen, einschließlich Sicherheits-, Überwachungs- und Militäranwendungen, bei denen Bösewichte in dunklen, rauchigen, nebligen oder staubigen Umgebungen verfolgt werden ... oder sogar, wenn sie hinter einer Bootsabdeckung versteckt sind .

Archäologen setzen Infrarotkameras an Ausgrabungsstätten ein. Ingenieure verwenden sie, um strukturelle Mängel zu finden. Ärzte und Medizintechniker können Probleme im menschlichen Körper lokalisieren und diagnostizieren. Feuerwehrleute spähen ins Herz des Feuers. Mitarbeiter von Versorgungsunternehmen erkennen potenzielle Probleme im Stromnetz oder finden Lecks in Wasser- oder Gasleitungen. Astronomen nutzen Infrarot-Technologie, um die Tiefen des Weltraums zu erforschen. Wissenschaftler verwenden sie für eine Vielzahl von experimentellen Zwecken.

Für all diese Aufgaben gibt es verschiedene Arten von Wärmebildgeräten, aber alle Kameras beruhen auf denselben Prinzipien, um zu funktionieren. Auf der nächsten Seite ziehen wir die Scheuklappen ab, wie die Wärmebildtechnik genau funktioniert.

Inhalt
  1. Leichte Aufklärung
  2. Wärmebildtechnik heizt auf
  3. Feinheiten der Wärmebildgebung
  4. Nachtsicht ... Nein
  5. Superheiße Tech

Leichte Aufklärung

Eine Illustration des infraroten Teils des elektromagnetischen Spektrums.

Menschliche Augen sind wunderbar komplizierte und komplizierte Organe. Sie sind dafür gemacht, sichtbares Licht zu sehen . Dieses Licht wird von Objekten reflektiert und macht sie für uns sichtbar.

Licht, das eine Art von Strahlung ist, hat mehr Geschmacksrichtungen als nur die sichtbare. Das Spektrum des Lichts umfasst ein gesamtes elektromagnetisches Spektrum , bestehend aus sichtbarem und unsichtbarem Licht sowie Röntgenstrahlen , Gammastrahlen, Radiowellen, Mikrowellen und ultraviolettem Licht.

Die Wellenlänge (auch Frequenz genannt ) unterscheidet jede dieser Lichtarten voneinander. An einem Ende des Spektrums haben wir zum Beispiel Gammastrahlen, die sehr kurze Wellenlängen haben. Auf der anderen Seite des Spektrums haben wir Radiowellen, die viel längere Wellenlängen haben. Zwischen diesen beiden Extremen gibt es ein schmales Band des sichtbaren Lichts, und in der Nähe dieses Bands existieren Infrarotwellenlängen mit Frequenzen von 430 THz (Tetrahertz) bis 300 GHz (Gigahertz).

Durch das Verständnis von Infrarot können wir Wärmebildgeräte verwenden, um die Wärmesignatur von nahezu jedem Objekt zu erkennen. Fast alle Materie gibt zumindest ein bisschen Wärme ab, sogar sehr kalte Objekte wie Eis. Denn solange sich dieses Objekt nicht am absoluten Nullpunkt (minus 459,67 Grad Fahrenheit oder minus 273,15 Grad Celsius) befindet, wackeln und zittern seine Atome immer noch, stoßen herum und erzeugen Wärme.

Manchmal sind Gegenstände so heiß, dass sie sichtbares Licht ausblenden – denken Sie an die roten, glühend heißen Spulen auf einem Elektroherd oder die Kohlen in einem Lagerfeuer. Bei einer niedrigeren Temperatur leuchten diese Objekte nicht rot, aber wenn Sie Ihre Hand definitiv in ihre Nähe bringen können, können Sie die Wärme oder Infrarotstrahlen spüren, wenn sie nach außen auf Ihre Haut strömen.

Unsere Haut ist jedoch oft nicht sehr nützlich, um Infrarot zu erkennen. Wenn Sie eine Tasse mit warmem Wasser und eine mit kaltem Wasser füllen und sie auf einem Tisch gegenüber einem Raum abstellen würden, hätten Sie keine Ahnung, welche welche war. Eine Wärmebildkamera hingegen weiß es sofort.

In einer solchen Situation ist der Mensch auf elektronische Hilfsmittel zur Unterstützung angewiesen. Im Wesentlichen sind Wärmebildgeräte wie ein Kumpel für unser Sehvermögen, indem sie unsere Sichtweite erweitern, sodass wir zusätzlich zum sichtbaren Licht auch Infrarot sehen können. Mit dieser erweiterten visuellen Information ausgestattet, werden wir zu Superhelden des elektromagnetischen Spektrums.

Aber wie kann ein digitales Gerät möglicherweise unsichtbare Wärmesignale erfassen und ein Bild erzeugen, das für unsere Augen sinnvoll ist? Auf der nächsten Seite sehen Sie, wie die Fortschritte in der digitalen Verarbeitung dies möglich machen.

Wärmebildtechnik heizt auf

Sir William Herschel, der Astronom, der Infrarotwellenlängen entdeckte. Ihm wird auch die Entdeckung des Planeten Uranus zugeschrieben.

Thermografiekameras sind moderne Hightech-Geräte. Aber die Entdeckung des Infrarotlichts ist schon lange her.

Im Jahr 1800 entdeckte ein britischer Astronom namens Sir William Herschel Infrarot. Er tat dies, indem er einen Sonnenstrahl mit einem Prisma in seine verschiedenen Wellenlängen aufteilte und dann ein Thermometer in die Nähe jeder Lichtfarbe hielt. Er erkannte, dass das Thermometer Wärme auch dort detektierte, wo kein sichtbares Licht vorhanden war – mit anderen Worten, in den Wellenlängen, in denen Infrarot existiert.

Throughout the 1800's, a series of intrepid thinkers experimented with materials that changed in conductivity when exposed to heat. This led to the development of extremely sensitive thermometers, called bolometers, which could detect minute differences in heat from a distance.

Yet it wasn't until after World War II that infrared research really started heating up. Rapid advances took place, in large part thanks to the discovery of transistors, which improved the construction of electronics in a multitude of ways.

These days, the evolution of infrared cameras has diverged into two categories, called direct detection and thermal detection.

Direct detection imagers are either photoconductive or photovoltaic. Photoconductive cameras employ components that change in electrical resistance when struck by photons of a specific wavelength. Photovoltaic materials, on the other hand, are also sensitive to photons, but instead of changing resistance, they change in voltage. Both photoconductive and photovoltaic cameras both require intense cooling systems in order to make them useful for photon detection.

By sealing the imager's case and cryogenically cooling its electronics, engineers reduce the chance of interference and greatly extend the detector's sensitivity and overall range. These kinds of cameras are pricey, more prone to failure and expensive to fix. Most imagers don't have integrated cooling systems. That makes them somewhat less precise than their cooled counterparts, but also much less costly.

Thermal detection technology, however, is often integrated into tools called microbolometers. They don't detect photons. Instead, they pick up on temperature differences by sensing thermal radiation from a distant object.

As microbolometers absorb thermal energy, their detector sensors rise in temperature, which in turn alters the electrical resistance of the sensor material. A processor can interpret these changes in resistance and use the data points to generate an image on a display. These arrays don't need any crazy cooling systems. That means they can be integrated into smaller devices, such as night vision goggles, weapons sights and handheld thermal imaging cameras.

Thermal Imaging Intricacies

Thermal images work a little like the human eye. Only instead of picking up on visible, reflected light, thermal imaging devices detect the heat released by an object.

As you already know, objects both hot and cold emit heat. As that heat moves outward from the object, a thermal imaging device can see it. Like a camera, these devices have an optical lens, which focuses the energy onto an infrared detector. This detector has thousands of data points so that it can detect subtle changes in temperature, from about minus 4 degrees Fahrenheit (minus 20 degrees Celsius) to 3,600 degrees Fahrenheit (2,000 degrees Celsius).

Then, the detector constructs a thermogram, which is basically a temperature pattern. The data from the thermogram is transformed into electrical signals and zipped to a processing chip in the camera. That chip converts the thermogram's raw data into visual signals that appear on a display screen. The whole process works very quickly, updating about 30 times per second.

Many imagers show objects as monochrome pictures, with hotter areas shown as black and cooler areas as gray or white. On a color imager, hot objects jump off the screen as white, yellow, red and orange, while cool areas are blue or violet. These are called false color images, because the device artificially assigns colors to each area of the image -- unlike a regular camera , which creates true color images that show objects as they appear in real life.

Depending on the relative warmth of each object in view, the resulting image may offer striking visual detail, such as a full picture of a man holding a gun. In instances where temperature gradations are less distinct, the image may be fuzzier and less definitive.

Picture quality changes depending on whether the imager is active or passive. Active systems actually warm the surface of a target object using a laser or other energy source in order to make it more visible to its detector (and also anyone standing near the target area). For example, some car manufacturers warm vehicle parts as they pass through the factory, making any flaws in construction more visible to thermal cameras. Passive systems just detect the heat that the object emits naturally. Both systems have their pros and cons, but the simplicity of passive systems makes them far more common.

Night Vision ... Nope

Don’t be confused. Night vision imaging (pictured here) is not the same as thermal imaging.

Early versions of infrared detectors were big, unwieldy and noisy. Contemporary cooled systems are much improved, but even now they are still heavy, bulky and expensive, and often attached to large vehicles or planes so that they can be moved to a location and then put to use.

One popular cooled system, for example, is the FLIR SAFIRE III, which was used to narrow the search for the Boston bombing suspect [source: Peluso]. This unit is tough enough for military use and stabilized with an onboard gyroscope, and it works on land vehicles or on aircraft. It also weighs 100 pounds and costs around $500,000 as of 2013. "Cheaper" detecting units often run into tens of thousands of dollars, making them too expensive for the general public.

Uncooled products are much less expensive, and they are a lot smaller, too. Take the Extech i5 -- it costs around $1,600 and it weighs the same as a can of soda. It has a rechargeable lithium-ion battery, a 2.8-inch (7.1-centimeter) color LCD screen and, like a typical digital camera, it stores its pictures to a removable flash card.

Or consider the FLIR Scout PS24 monocular, which retails for roughly $2,000. It's only 6.7 inches (17 centimeters) long, so hikers, hunters and security professionals can take it wherever they roam. In spite of its small size, it has a color display and is waterproof, too.

Some of these imagers offer nifty features such as picture-in-picture displays, interchangeable lenses, laser pointers (so you can see exactly where you're pointing the camera), integrated GPS , WiFi connectivity and even microphones so that you can add voice comments to each image.

The Extech and FLIR products are both based on microbolometer technology. They're much different than most of the night-vision or infrared illuminated cameras common at the consumer level. You know these gadgets -- they produce that sickly green glow in movies and TV shows.

That kind of night vision doesn't detect heat. Instead, those products greatly amplify wisps of ambient light in order to reveal objects in the dark. In other words, they still need visible light being reflected off of those objects or they won't work very well.

The same goes for infrared illuminated cameras. These cameras project an infrared beam (think of your TV's remote control), which bounces off target objects and reflects light back towards the camera sensor.

Super-hot Tech

In May 2009, the Budapest Airport used a a thermographic camera at a security gate to monitor passenger temperatures to screen for possible carriers of influenza A(H1N1).

Thermal imagers are continually improving in sensitivity and features. But they are not a perfect technology.

Sure, these cameras can see heat signatures within vehicles, homes and other dense materials. But any physical material (such as glass windows) that blocks heat will reduce the device's effectiveness. You can even buy clothing that will counter some heat seeking sensors [source: Maly].

There's also the matter of interpreting the images that appear on a camera's display. The often fuzzy, changeable pictures are simply representations of temperature and not actual pictures, so making sense of them depends on the user's expertise. Inexperienced people may misinterpret those images, especially in scenarios with extenuating circumstances such as inclement weather or interference.

Expense will continue to be an issue for anyone without deep pockets. Even the most affordable imagers cost many hundreds of dollars, and they have only a fraction of the capability of those deployed by government and military agencies.

Those that have the dough, though, can perform some amazing feats. The security and surveillance aspects are almost a given -- bad guys have a lot fewer places to hide when cops and soldiers can track suspects even without visual line of sight, whether it's in an urban area, on national borders or inside buildings.

Using thermal cameras, fire fighters can locate people trapped inside structures, home in on hot spots and pinpoint structural problems before someone gets hurt. Scientists can find Arctic polar bear dens deep within snow banks. Ancient ruins often exhibit different heat signatures than the soil and rocks surrounding them, meaning archaeologists can use imagers to find their next excavation site.

Building inspectors carry thermal cameras to find leaks or deficiencies in roofs and insulation. Similarly, remediation workers can find water and subsequent mold growth behind walls, even in cases where a property owner had no idea there was a problem.

Power grid components that are overheating may lead to failure and then blackouts . To ward off outages, workers leverage imagers to spot deteriorating areas in a grid. Gas leaks are another major challenge for utilities, and thermal cameras can see leaks before they become bigger issues.

Worried about an epidemic? Install thermal cameras at high-traffic public areas like rail stations and airports and you can spot feverish folks in a crowd.

The list of uses goes on and on. And as companies invest more in research and development, thermal cameras will only get better and cheaper, and thus find a place in many more situations, from recreation to research. What's now a hot technology is only getting hotter, and we humans are seeing our world in a whole new way.

Lots More Information

Author's Note: How Thermal Imaging Works

We call them thermal cameras, but they aren't really cameras. Instead, thermal imagers are sensors. And for the moment, they are really, really pricey. I was fortunate enough to play with a handheld imager a few years ago when we were searching for the source of a mysterious water intrusion in a suburban home. Camera in hand, we found that one corner of the house was much cooler than other walls. We removed the drywall and found a hole just big enough to create a water problem during heavy downpours. We may have used the device for only a couple of hours, but it definitely proved its worth.

Related Articles

  • How Infrared Heaters Work
  • Night Vision Pictures
  • How Night Vision Cameras Work
  • How Sidewinder Missiles Work

Sources

  • Atherton, Kelsey D. "How it Works: The Thermal Camera that Found the Boston Bomber." Popular Science. April 25, 2013. (May 3, 2013) http://www.popsci.com/technology/article/2013-04/how-works-awesome-thermal-camera-found-boston-bomber
  • Beckhusen, Robert. "DARPA Finally Shrinks Massive Thermal Cameras into Handheld Devices." Wired. April 17, 2013. (May 3, 2013) http://www.wired.com/dangerroom/2013/04/darpa-infrared-cameras/
  • Boyle, Alan. "Secret Weapon? How Thermal Imaging Helped Catch Bomb Suspect." NBC News. April 20, 2013. (May 3, 2013) http://usnews.nbcnews.com/_news/2013/04/19/17830076-secret-weapon-how-thermal-imaging-helped-catch-bomb-suspect?lite
  • Brown, Emily and Leinwand, Donna. "Helicopter, Infrared Cameras Help Confirm Suspect in Boat." USA Today. April 20, 2013. (May 3, 2013) http://www.usatoday.com/story/news/nation/2013/04/20/boston-suspect-boat-helicopter-infrared/2099959/
  • Electronic Design. "Infrared Sensors – The All-Purpose Detection Devices." May 7, 2009. (May 3, 2013) http://electronicdesign.com/energy/infrared-sensors-all-purpose-detection-devices
  • European Space Agency. "Caroline and William Herschel: Revealing the Invisible." (May 3, 2013) http://www.esa.int/Our_Activities/Space_Science/Herschel/Caroline_and_William_Herschel_Revealing_the_invisible
  • Dalesio, Emery P. "Thermal Imaging a Hot New Archaeology Tool." Los Angeles Times. May, 14, 2000. (May 3, 2013) http://articles.latimes.com/2000/may/14/news/mn-29896
  • Davis, Joshua. "The Fire Rebels." Wired. June 2005. (May 3, 2013) http://www.wired.com/wired/archive/13.06/firefight.html
  • Drank, Nadia. "Infrared Images Reveal Frigid, Purple Penguins." Wired. March 5, 2013. (May 3, 2013) http://www.wired.com/wiredscience/2013/03/infrared-penguins/
  • FLIR product page. "Star SAFIRE III." 2011. (May 3, 2013) http://gs.flir.com/uploads/file/products/brochures/star_safire_III_a_ltr.pdf
  • FLIR Corporate Page. "Why Use Thermal Imaging?" (May 3, 2013) http://www.flir.com/cs/emea/en/view/?id=41530
  • FLIR Corporate Page. "What's the Difference Between Thermal Imaging and Night Vision?" (May 3, 2013) http://www.flir.com/cvs/americas/en/view/?id=30052
  • Homeland Security News Wire. "FLIR Shows New Thermal Imaging Camera." May 3, 2007. (May 3, 2013) http://www.homelandsecuritynewswire.com/flir-shows-new-thermal-imaging-camera
  • IEC Infrared Systems. "Infrared Cameras: How They Work." (May 3, 2013).
  • http://www.iecinfrared.com/how-infrared-cameras-work.html
  • Infrared Security Solutions product page. "LongView." (May 3, 2013) http://www.iss-thermal.com/longview.html
  • Kondas, David A. "Introduction to Lead Salt Infrared Detectors." U.S. Army Armament Research, Development and Engineering Center. Feb. 1993. (May 3, 2013) http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA260781&Location=U2&doc=GetTRDoc.pdf
  • Parks, Bob. "Tool: Hot Shot Thermal Imager for Law Enforcement." Wired. Oct. 6, 2009. (May 3, 2013) http://www.wired.com/magazine/2009/10/st_tool_thermal_imager/
  • Rogalski, Antoni. "History of Infrared Detectors." 2012. (May 3, 2013) http://antonirogalski.com/wp-content/uploads/2012/12/History-of-infrared-detectors.pdf
  • Texas Instruments history page. "Defense." (May 3, 2013) http://www.ti.com/corp/docs/company/history/lowbandwidthtimelinedefense.shtml
  • White, Jack R. "Herschel and the Puzzle of Infrared." American Scientist. May-June 2012. (May 3, 2013) http://www.americanscientist.org/issues/feature/2012/3/herschel-and-the-puzzle-of-infrared