O tempo acelera no universo, por qual fórmula?

May 02 2023
Como é que o tempo era duas vezes mais lento há 14 bilhões de anos, 12 vezes mais lento há 32 bilhões de anos e assim por diante, mas não existe uma fórmula matemática para o tempo (ou dilatação do tempo) derivada dessas medições? Vamos denotar por “t” quanto do nosso tempo passou entre algum momento no passado e agora. E vamos tentar encontrar a fórmula D(t) para a dilatação do tempo em algum ponto no passado: D(t) representa quantos segundos do nosso tempo passa por 1 segundo do tempo que foi t-tempo atrás, por exemplo: Δ = D(t)Δt — apenas comparando o número de segundos passados ​​e atuais.

Como é que o tempo era duas vezes mais lento há 14 bilhões de anos, 12 vezes mais lento há 32 bilhões de anos e assim por diante, mas não existe uma fórmula matemática para o tempo (ou dilatação do tempo) derivada dessas medições?

Vamos denotar por “t” quanto do nosso tempo passou entre algum momento no passado e agora. E vamos tentar encontrar a fórmula D(t) para a dilatação do tempo em algum ponto no passado: D(t) representa quantos segundos do nosso tempo passa por 1 segundo do tempo que foi t -tempo atrás, por exemplo:

  • D(14 bilhões de anos) = 2, significando que 2 nossos segundos passam por 1 segundo do tempo de 14 bilhões de anos;
  • D(32 bilhões de anos) = 12, significando que 12 nossos segundos passam por 1 segundo do tempo de 32 bilhões de anos;

Δ = D(t)Δt — apenas comparando o número de segundos passados ​​e atuais.

Δt= 1/D(t) Δ.

Vamos calcular o total na última fórmula: ∑ Δt = ∑ 1/D(t) Δ.

O total do lado esquerdo é o nosso tempo na verdade: ∑ Δt = t.

No lado direito temos duas variáveis ​​t e , podemos nos livrar de substituindo o termo Δ por D(t)Δt:

∑ 1/D(t) Δ = ∑ 1/D(t) D(t)Δt = ∑ 1 Δt.

Todos os itens acima em uma única linha:

t = ∑ Δt = ∑ 1/D(t) Δ = ∑ 1/D(t) D(t)Δt = ∑ 1 Δt

O último é apenas uma integral de 1 de 0 a t: ∫1dt. Assim, a linha acima chega a:

que é sempre verdade

Isso explica por que praticamente qualquer função D(t) pode descrever a dilatação do tempo e por que nenhuma fórmula matemática para o tempo é derivada das medições do Hubble. O valor D(t) da dilatação do tempo depende apenas de quanto tempo foi queimado na matéria entre o tempo t atrás e agora, verifique a explicação em Tempo de queima em laboratórios e galáxias . E não há razão nem dados para que a queima ocorra a um ritmo “constante”, “exponencial” ou “logarítmico”.

PS A lei de Hubble é apenas uma aproximação linear (de primeira ordem) e não uma fórmula real. Verifique o Time Matters: 3ª edição do e-book gratuito sobre o que acabamos de discutir. E se estiver interessado em saber mais, verifiqueo capítulo gratuito de Planck's Constant Was Smaller in the Early Universe em Time Matters: 4th edition eBook.