10 Möglichkeiten, einen Killer-Asteroiden zu stoppen

Mar 26 2012
Killer-Asteroiden sind alle Spaß und Spiel – bis sie auf die Erde zusteuern. Wie können wir verhindern, dass kosmische heiße Kartoffeln unseren Planeten auslöschen?
Es sieht eher aus wie eine Kartoffel.

Wenn Sie von einem Mörder verfolgt würden, würden Sie versuchen, ihn oder sie aufzuhalten, richtig? Nehmen wir an, Ihr Mörder ist ein Weltraumfelsen in Form einer Idaho-Knolle. Was würden Sie dagegen tun? Interessanterweise liegt die Wahrscheinlichkeit, dass Sie von einem Verrückten ermordet werden, bei etwa eins zu 210 [Quelle: Bailey ]. Die Wahrscheinlichkeit, von einer kosmischen Kartoffel getötet zu werden, ist etwas geringer – etwa eins zu 200.000 bis 700.000 im Laufe Ihres Lebens, je nachdem, wer die Berechnung anstellt [Quellen: Bailey , Plait ]. Aber hier ist der Haken: Keine einzelne Person – nicht einmal jemand so Böses wie Hitler-- könnte die gesamte Menschheit auslöschen. Ein Asteroid könnte. Wenn ein Felsen mit einem Durchmesser von nur 10 Kilometern unsere schöne, blaue Welt treffen würde, wäre dies Adiós muchachos für jeden einzelnen von uns [Quelle: Plait ].

Es macht also Sinn, einen Asteroiden daran zu hindern, die Erde zu überrollen, aber ist das überhaupt möglich? Und wenn es möglich ist, können wir es uns leisten? Die Antwort auf die erste Frage mag Sie überraschen, denn es gibt tatsächlich viele verschiedene Möglichkeiten, einen Weltraumfelsen zu vereiteln. (Niemand hat jemals gesagt, dass sie klug sind.) Wie viel es kosten könnte, bleibt bestenfalls ungewiss. Geld sollte jedoch nicht die Hauptsorge sein, wenn es um das Überleben der Menschheit geht. Also werfen wir diese Frage aus dem Fenster und konzentrieren uns auf die 10 besten Möglichkeiten, einen Killer-Asteroiden zu stoppen, egal wie verrückt (oder kostspielig) sie auf dem Papier erscheinen.

Zunächst einmal haben wir eine Lösung, die auf bewährter Technologie des Kalten Krieges basiert: Atomwaffen .

Inhalt
  1. Lassen Sie den Großen auf den Großen fallen
  2. Sprechen Sie leise und tragen Sie einen großen Schlag
  3. Wirf ein paar Photonen auf das Problem
  4. Verwandle den Stein in einen Puffball
  5. Lade den Asteroiden zu einem Tractor Pull ein
  6. Werde aufdringlich mit dem Planetoid
  7. Wirf ein paar Fastballs
  8. Spiele Tetherball mit dem Asteroiden
  9. Erhöhen Sie Ihre Reaktionszeit
  10. Bereite dich auf das Schlimmste vor

10: Lassen Sie den Großen auf den Großen fallen

Schauen Sie sich den Impaktor an, mit dem die NASA 2005 die Oberfläche des Kometen Tempel 1 aufriss.

Atomwaffen sind vielleicht nicht originell, aber sie sind eine bekannte Entität und daher eine logische Wahl, wenn Sie einen Felsbrocken in Stücke sprengen müssen. Bei diesem Supermacho-Ansatz wird ein Atomsprengkopf auf einen sich nähernden Asteroiden geschleudert . Es gibt nur ein Problem: Ein direkter Treffer auf ein großes Objekt kann es nur in mehrere kleinere Teile zerbrechen (erinnern Sie sich an "Deep Impact"?). Eine bessere Option könnte darin bestehen, einen Sprengkopf in der Nähe des Asteroiden zur Detonation zu bringen und die Hitze der Explosion eine Seite des Felsens verbrennen zu lassen. Wenn Material von seiner Oberfläche verdampft, würde der Asteroid in die entgegengesetzte Richtung beschleunigen – gerade genug (Daumen drücken), um ihn von der Erde wegzulenken.

Wenn Explosionen nicht Ihr Ding sind, Sie aber trotzdem etwas treffen möchten, werden Sie eine andere Technik zu schätzen wissen, die als kinetische Impaktorablenkung bekannt ist . Die "Kinetik" bezieht sich in diesem Fall auf kinetische Energie, die alle sich bewegenden Objekte haben und die das Universum bewahrt. Aber wir überholen uns. Blättern Sie um, um zu erfahren, wie das Verhalten von Billardkugeln unseren Planeten retten könnte.

9: Sprechen Sie leise und tragen Sie einen großen Schlag

Wenn Sie jemals Billard gespielt haben, dann kennen Sie sich mit kinetischer Energie aus, das ist die Energie, die jedes sich bewegende Objekt besitzt. Die kinetische Energie eines getroffenen Spielballs wird auf andere Bälle auf dem Tisch übertragen. Astronomen glauben, dass das gleiche Prinzip einen erdgebundenen Asteroiden ablenken könnte . In diesem Fall ist der Spielball ein unbemanntes Raumschiff, ähnlich der Sonde, die in der Deep Impact-Mission der NASA verwendet wird (nicht zu verwechseln mit dem Film). Die Masse des Deep Impact-Schiffs betrug nur 816 Pfund (370 Kilogramm), aber es bewegte sich sehr, sehr schnell – 5 Meilen (10 Kilometer) pro Sekunde [Quelle: NASA ].

Die kinetische Energie hängt sowohl von der Masse als auch von der Geschwindigkeit eines Objekts ab, sodass ein kleines Objekt, das sich schnell bewegt, immer noch viel Energie hat. Als Missionsingenieure 2005 die Deep Impact-Sonde in die Oberfläche des Kometen Tempel 1 rammten, sollte sie 19 Gigajoule kinetische Energie liefern. Das entspricht 4,8 Tonnen TNT, genug, um den Kometen in seiner Umlaufbahn auch nur geringfügig zu verschieben [Quelle: NASA ].

Astronomen wollten die Flugbahn von Tempel 1 nicht ändern, aber sie wissen jetzt, dass dies möglich wäre, sollte ein Asteroid oder Komet die Erde ins Visier nehmen. Selbst mit einem Erfolg auf dem Buckel erkennen die Wissenschaftler die enorme Herausforderung einer solchen Mission. Es ist so, als würde man eine rasende Kanonenkugel mit einer rasenden Kugel treffen. Eine falsche Bewegung, und Sie könnten Ihr Ziel komplett verfehlen oder es außermittig treffen, wodurch es taumelt oder in Stücke bricht. Im Jahr 2005 entwickelte die Europäische Weltraumorganisation das Don Quijote-Konzept, um die Chancen einer kinetischen Impaktor-Mission zu verbessern (siehe Seitenleiste).

You might classify nuclear weapons or kinetic impactors as instant-gratification solutions because their success (or failure) would be immediately apparent. Many astronomers, however, prefer to take the long view when it comes to asteroid deflection.

Hidalgo, Sancho and Don Quijote

Leave it to Europe to merge great literature with great impact. The European Space Agency's take on a kinetic impactor is dubbed Don Quijote and calls for two spacecraft -- an orbiter named Sancho and an impactor named Hidalgo. Sancho would arrive at the killer asteroid first, get the lay of the land and transmit details back to Hidalgo. Trailing behind its companion, Hidalgo would arrive with all the intelligence it needed to make a pinpoint strike.

8: Throw a Few Photons at the Problem

This four-quadrant solar sail system (66 feet on each side!) gets poked and prodded at NASA's Glenn Research Center at Plum Brook Station in 2005.

Electromagnetic energy produced by the sun applies pressure to any object in the solar system. Astronomers like to call it solar, or radiation , pressure and have long thought this stream of energy could be a source of propulsion for rockets. Just strap some sails onto a spacecraft, let them catch a few rays and the ingenious vessel will slowly, gradually, pick up speed as incoming photons transfer their momentum to the sail. Could something similar work on an asteroid ? A couple of scientists think so. Assuming you had some time -- we're talking decades here -- you could fasten some solar sails on an asteroid, do a little tacking and steer the rock away from Earth.

Of course, even Bruce Willis might not be extreme enough to land on a hunk of rock and try to convert it into a cosmic sailboat. Another option would be to wrap the asteroid in foil or coat it with highly reflective paint. Either solution would have the same effect as a solar sail , harnessing the energy of incoming photons. Then again, who's going to try to wrap foil around a giant potato traveling, say, at 16 miles (25 kilometers) per second [source: Jessa]? Or carry a few million gallons of paint into space?

Luckily, there's another sun-centered solution that might not seem so wacky.

7: Turn the Rock Into a Puffball

A smoking mushroom, a concept that proves oddly handy in space, too

You're familiar with puffballs, right? They're the little round mushrooms we often see in fields and forests that reproduce by releasing spores through a topside exit hole. Poke a fresh puffball, and you'll see black smoke shoot out in a jet.

Strangely enough, astronomers think they can get an asteroid to do the same thing, though not by poking it. Instead, they envision parking an unmanned probe in orbit around an offending rock, then aiming a laser at the object's surface. As the laser heats up the rocky substrate, steam and other gases will erupt in fast-moving jets. According to Newton's laws of motion , each burst of gas applies a tiny force in the opposite direction. Heat the asteroid long enough, and you'll have it hissing like a teakettle and moving, centimeter by centimeter, off its original course.

Some see the laser as the limiting factor in this scenario. What if it can't draw enough power to sustain long-term heating? You could arm the probe with an array of mirrors. Once you get the spacecraft in orbit around the asteroid , you simply unfurl the mirrors and orient them so that they direct a beam of concentrated sunlight toward the object's surface. This provides the necessary heating without the need for a high-powered laser.

Then again, why not use the orbiting spacecraft without all of the tricks and gimmicks? Doesn't it have mass and, as a result, gravity? And doesn't gravity pull on nearby objects? Why, yes, Sir Isaac, it does.

6: Invite the Asteroid to a Tractor Pull

In theory, a spacecraft like Dawn, seen in this artist's concept orbiting the asteroid Vesta, could alter an asteroid's orbit enough for us all to breathe a huge sigh of relief.

Every object in the universe, even something as small as a pebble, has gravity . You can't feel a pebble's gravity because its mass is so small, but it's still there, tugging away on anything that comes close. The close part is important because gravity is also related to the distance separating two objects. The closer they are, the greater the gravitational attraction.

A spacecraft zipping through the solar system obeys the same principles, exerting a gravitational pull directly proportional to its mass and inversely proportional to the distance between it and another object. Now, compared to an asteroid, which might have the mass of Mount Everest , a spacecraft is pretty puny, but its gravity can still make things happen. In fact, if you place an unmanned probe in a close orbit around an asteroid , it will pull ever so slightly on the rock. Over a period of 15 years or more, this almost infinitesimal tug could deflect the asteroid's orbit just enough to protect Earth from a nasty blow [source: BBC News].

Astronomers refer to this as a gravitational tractor and think it's a viable solution -- as long as they know about a potential collision years in advance. Early detection is just as critical to the next idea on the list.

5: Get Pushy With the Planetoid

Sort of like that, but imagine that the smaller boat is a spaceship and the larger vessel is a bothersome asteroid.

If the gravitational tractor concept seems too delicate and prissy, you're in luck. A few scientists are proposing another way to make use of a spacecraft that doesn't require slamming it into an asteroid or entering a passive orbit. They studied busy harbors here on Earth and observed how tugboats nudge large ships up to the wharf. Then they developed an asteroid-deflection scenario using a similar technique.

Here's how it works: First, you build a special ship with powerful plasma engines and an array of radiator panels to dissipate heat from the onboard nuclear reactors . After you're alerted of a threat, you launch the vessel and fly it to the offending asteroid. Then you ease the space tug close to the rocky surface and attach the vessel using several segmented arms. Finally, you go easy on the throttle and start a slow, gentle push. If all goes well, 15 to 20 years of pushing in the direction of the asteroid's orbital motion will deflect it just enough to avoid a catastrophe [source: Schweickart ].

Still not convinced? Then grab your mitt and keep moving to the next page.

4: Throw a Few Fastballs

Remember those baseball pitching machines you faced when you were a kid? They had a feeder tube and a wheel assembly to shoot the balls out at 50 to 60 miles (80 to 97 kilometers) an hour. Wouldn't it be great if you could set up a pitching machine on an asteroid ? Not to take batting practice, but to save the world?

As crazy as it sounds, astronomers have an idea to do just that. They call their machine a mass driver, but it works the same way. It scoops up rocks from the surface of an asteroid and hurls them out into space. With each throw, the machine applies a force to the rock, but the rock, thanks to Newton's action-reaction law , applies a force back to the machine -- and to the asteroid. Throw a few hundred thousand rocks, and you'll actually shift the asteroid's orbit.

Of course, the concept has invited some criticism. How do you get the mass driver on the asteroid? And how do you keep it powered? A pitching machine plugs into an electrical supply, but extension cords are tough to manage out in space. And what if the darn thing breaks down? A relief pitcher may not be available to finish the game.

Maybe baseball is the wrong sport. Maybe another backyard favorite offers a better solution.

Entertaining Yourself Until the World Ends

No, REM, we don't feel fine at all, but we might as well get some books and flicks in while we wait. Here are some (non-escapism) picks:

  • "Lucifer's Hammer" by Larry Niven and Jerry Pournelle
  • "Death From the Skies!" by Phil Plait
  • "The Road" by Cormac McCarthy
  • "The Walking Dead" (either the graphic novels or the TV series)
  • "The Day of the Triffids"
  • "Melancholia"
  • South Park's "Deeply Impacted" episode

3: Play Tetherball With the Asteroid

Tethers prove awfully handy in space, whether you're out taking a stroll or trying to move an asteroid.

In 2009, a doctoral candidate at North Carolina State University proposed a novel asteroid-deflection technique in his dissertation. This was the idea: Attach one end of a tether to an asteroid and the other end to a massive weight known as a ballast. The ballast acts like an anchor, changing the asteroid's center of gravity and diverting its trajectory over the course of 20 to 50 years, depending on the size of the rock being moved and the weight of the ballast.

The student didn't work out every detail, but he estimated that the tether would need to be somewhere between 621 miles and 62,137 miles (1,000 and 100,000 kilometers) long. He also suggested a crescent-shaped attachment bar similar to those found on globes. This would allow the asteroid to rotate without tangling the tether (no one likes a tangled tether).

Now, if you think this sounds just too wacky to work, you should know that astronomers have embraced space tethers for years. In fact, NASA has used them successfully on several missions to move payloads in Earth's orbit. Future missions call for delivering material to the moon by handing off payloads across a series of tethers.

Still, a tether and ballast system, like most solutions in our countdown, requires time. And time requires early detection. As we'll see next, asteroid detection may be far more important than deflection.

2: Increase Your Reaction Time

Hang out with the scientists from NASA's Near-Earth Object program in this video.

When it comes to asteroids , you want to be like the Rolling Stones and put time on your side (yes, you do). Luckily, steps are being taken to survey and detect near-Earth objects, or NEOs.

NASA addresses NEO detection through two surveys mandated by U.S. Congress. The first, known as the Spaceguard Survey, seeks to detect 90 percent of NEOs 1 kilometer (0.621 miles) in diameter. Congress had set the original deadline as 2008, but the work continues as astronomers keep discovering and learning more about these enigmatic rocks. The second survey, the George E. Brown Jr., Near-Earth Object Survey, seeks to detect 90 percent of near-Earth objects 459 feet (140 meters) in diameter or greater by 2020. Both surveys rely on powerful telescopes to repeatedly scan large areas of the sky.

As of March 2012, those telescopes had discovered 8,818 near-Earth objects. Almost 850 of those NEOs were asteroids with a diameter of approximately 1 kilometer or larger. Nearly 1,300 were labeled as potentially hazardous asteroids, or PHAs. PHAs must be at least 492 feet (150 meters) wide and must come within 4.65 million miles (7.48 million kilometers) of Earth [source: NASA]

Now, if you're prone to panic, remember that the key word is "potentially." Not every space rock that makes a close approach to Earth will make an impact. Still, it's a sobering number, especially when you realize that the solar system likely contains hundreds of thousands, or even millions, of asteroids. How many have we just not seen? And how many will go unnoticed until it's too late?

As we grapple with that final question, we must face a harsh reality: Despite our best efforts, a catastrophic impact could be in Earth's future. Next, we'll consider a few civil defense strategies that might be necessary if an asteroid comes knocking.

1: Prepare for the Worst

So, the tether on your tether-and-ballast system got tangled. The gravity tractor wasn't built Ford-tough. What do you do now about that killer asteroid barreling toward Earth? Well, if you tried one of the mitigation strategies just mentioned, the asteroid is most likely (a) big and (b) far away. That gives you some time to prepare for impact, although you won't have any historical precedent to provide best practices.

In fact, many astronomers point to fictional accounts -- "On the Beach" by Nevil Shute, for example -- as the best source material about what we might do and how we might fare in a true global cataclysm. Clearly, astronomers would try to pinpoint where the asteroid would hit so ground-zero areas could be evacuated, and governments would try to build underground bunkers, store food and water, collect animal and plant species, and shore up the global financial, electronic, social and law-enforcement infrastructures. The impact of a smaller asteroid -- say, one about 984 feet (300 meters) wide -- could devastate a region the size of small nation.But a rock bigger than 0.621 miles (1 kilometer) wide would affect the whole world. A rock larger than 1.86 miles (3 kilometers) would end civilization [source: Chapman ].

Tsunamis , firestorms and earthquakes might cause additional damage. Either way -- impact in the ocean or land -- public officials might only have days or hours to evacuate heavily populated areas. Millions of lives would likely be lost.

Given these scenarios, you can see why governments around the world are so interested in keeping asteroids far from our biosphere. You can also see why dollars don't always drive decisions -- because the cost of failure far exceeds the cost of even the most elaborate deflection concept.

Land or Ocean?

Even a small, 300-meter asteroid means trouble. If it struck the ocean, an epic tsunami at least 32 feet (10 meters) high would wash over coastal areas, with follow-up waves adding to the misery. The December 2004 tsunami in Southeast Asia might serve as an example, although an asteroid-induced tidal wave might behave quite unexpectedly.

If the rock struck land, it would dig out a crater 1.86 to 2.49 miles (3 to 4 kilometers) across and deeper than the Grand Canyon. Everything within a 31-mile (50-kilometer) radius of the blast would be destroyed [source: Chapman ].

Stop Killer Asteroid FAQ

How would NASA stop an asteroid?
NASA has multiple techniques to stop an asteroid including nuclear weapons, kinetic impactors and gravitational tractors, among others. Of course, these techniques are largely untested.
Can you survive an asteroid?
It is possible to survive an asteroid hitting Earth, depending on the space rock's size. The asteroids to be particularly aware of are the ones bigger than 0.621 mile (1 kilometer) wide, as an impact from one of those bodies would affect the whole world.
Did an asteroid ever hit Earth?
Yes, one of the most widely known impactors to hit Earth was the Chicxulub asteroid (or possibly comet), which wiped out the dinosaur population. /
What does NASA plan for asteroids?
NASA and others keep a close eye on near-earth objects. According to NASA, its Center for Near Earth Object Studies "computes high precision orbits for Near-Earth Objects (NEOs), predicts their future motions, assesses their impact hazard, and makes those results available" on their website.
What is the next asteroid to hit Earth?
Scientists had thought there was a small possiblity for Apophis to impact Earth in 2029, but have revised their prediction of its orbit, instead saying that Apophis will do a flyby of Earth.

Lots More Information

Author's Note: 10 Ways to Stop a Killer Asteroid

A few years back, I saw a TV program about the increased contact occurring between humans and sharks. There was one amazing shot that stuck with me: It showed an aerial view of swimmers just off the coast of Nags Head, and, unbeknownst to them, hundreds of sharks swam nearby. You could see their shadows among the bathers, dark and sinister. Had the people in the water known what was lurking nearby, they would have been on the beach in seconds. I feel the same way about NASA's NEO detection program. Are we better off knowing all those rocks are out there, circling us like sharks? Sometimes it seems better to be the oblivious bodysurfer who swims in ignorant bliss.

Related Articles

  • How Asteroid Belts Work
  • How Asteroid Mining Will Work
  • Top 10 Ways to Stop an Asteroid
  • How Comets Work
  • Could we really blow up an incoming asteroid with a nuclear bomb?
  • Could we stop an asteroid on a collision course with Earth?

Sources

  • Bailey, Ronald. "Don't Be Terrorized." Reason.com. Aug. 11, 2006. (March 11, 2012) http://reason.com/archives/2006/08/11/dont-be-terrorized
  • BBC News. "British plan to tackle asteroids." Science and Environment. Aug. 31, 2009. (March 11, 2012) http://news.bbc.co.uk/2/hi/science/nature/8230138.stm
  • Boston.com "How to stop a killer asteroid." Boston Globe infographic. Jan. 10, 2010. (March 11, 2012) http://www.boston.com/bostonglobe/ideas/articles/2010/01/10/Asteroid/
  • Chapman, Clark R. "How a Near-Earth Object Impact Might Affect Society." Commissioned by the Global Science Forum, OECD, for "Workshop on Near Earth Objects: Risks, Policies, and Actions." January 2003.
  • European Space Agency. "Don Quijote concept." NEO Space Mission Studies. Aug. 18, 2011. (March 11, 2012) http://www.esa.int/SPECIALS/NEO/SEMZRZNVGJE_2.html
  • Forward, Robert L. and Robert P. Hoyt. "Space Tethers." Scientific American. February 1999.
  • Jessa, Tega. "Eros Asteroid." Universe Today. June 7, 2011. (March 11, 2012) http://www.universetoday.com/87301/eros-asteroid/
  • Minard, Ann. "How to Keep Asteroids Away: Tie Them Up." Universe Today. Apr. 17, 2009. (March 11, 2012) http://www.universetoday.com/29317/how-to-keep-asteroids-away-tie-them-up/
  • NASA. "Deep Impact's Impactor." Deep Impact: Mission to a Comet. (March 11, 2012) http://www.nasa.gov/mission_pages/deepimpact/spacecraft/impactor.html
  • NASA. "Wie viele erdnahe Objekte wurden bisher entdeckt?" Häufig gestellte Fragen zum Near-Earth-Object-Programm. 18. März 2012. (18. März 2012) http://neo.jpl.nasa.gov/faq/
  • Zopf, Phil. "Tod durch Meteoriten." Schlechte Astronomie, Discover Magazine. 13. Okt. 2008. (11. März 2012) http://blogs.discovermagazine.com/badastronomy/2008/10/13/death-by-meteorite/
  • Schweickart, Russell, Edward T. Lu, Piet Hut und Clark R. Chapman. "Der Asteroidenschlepper." Wissenschaftlicher Amerikaner. November 2003.
  • Ausschuss für Weltraumstudien. "Verteidigung des Planeten Erde: Untersuchungen erdnaher Objekte und Strategien zur Gefahrenminderung." Die National Academies Press. 2010.