Poszukiwanie odmiany, która opisywałaby półgrupy wiernie reprezentowane jako właściwe tłumaczenia.
Jeśli $G$ jest grupą, widzimy, że bijekcja $y\mapsto y_r$, gdzie $(x)a_r = xa$, funkcje zapisane od prawej, to izomorfizm grupowy.
W ten sposób mamy ciekawą interpretację grup jako tłumaczeń.
Zainspirowani tym, niech $S$być jakąkolwiek magmą. Rozważmy tę samą operację prawidłowego tłumaczenia$S$. Możemy zadać pytanie, kiedy jest ta mapa$y\mapsto y_r$ homomorfizm.
Oczywiście to jest iff $(x)a_rb_r = (x)(ab)_r$ dla każdego $x, a, b$, to jest, $(xa)b = x(ab)$.
W ten sposób z prostego pytania o przekłady tworzące homomorfizm w naturalny sposób doszliśmy do definicji półgrupy.
Możemy zadać sobie kolejne pytanie, kiedy ta mapa jest izomorfizmem? To jest izomorfizm iff$y\mapsto y_r$ jest iniekcyjny, czyli iff $(x)a_r = (x)b_r$, to jest, $xa = xb$ sugeruje $a = b$ dla wszystkich $x, a, b$.
Takie półgrupy nazywane są lewymi słabo redukcyjnymi, w skrócie półgrupami lwr.
Jednak jest z tym poważny problem, półgrupy lwr nie tworzą różnorodności wśród struktur z operacjami binarnymi. jasne, jeśli$S$ jest więc półgrupą, która nie jest półgrupą lwr $S^1$, gdzie $S\mapsto S^1$jest operacją dodawania elementu tożsamości, jest półgrupą lwr. Ale wtedy$S^1$ zawiera $S$ jako jego podgrupę, tak że podgrupa półgrupy lwr nie musi być półgrupą lwr.
Ale istnieje klasa półgrup, która tworzy różnorodność, może nie jako struktury z operacjami binarnymi, ale z dodatkiem elementu zerowego. To są monoidy$(S, \cdot, e)$ gdzie $\cdot$ jest operacją binarną, $e$ jest elementem nullary i istnieją dwie tożsamości: $x(yz)\approx (xy)z$, $ex \approx x$.
Jako klasa półgrup wynikająca z zapomnienia operacji $e$ to znaczy $(S, \cdot, e)\mapsto (S, \cdot)$, wszystkie lewe monoidy są półgrupami lwr.
Moje pytanie brzmi, czy moglibyśmy znaleźć jakąś strukturę $(S, \cdot, \mathscr{F})$ gdzie $\mathscr{F}$ oznacza zbiór wszystkich $n$-arne funkcje dla $n\in\mathbb{N}_0$ inny niż $\cdot$ , funkcja binarna i tożsamości, tak że zestaw algebr spełniających te tożsamości tworzy różnorodność, a mapa $(S, \cdot, \mathscr{F})\mapsto (S, \cdot)$ bo każda algebra z tej odmiany zamienia ją w półgrupę lwr, a tak otrzymana klasa zbiorów jest maksymalna lub jeśli jest to niemożliwe.
Na początek, jeśli jest to odmiana, która obejmowałaby klasę półgrup między lewymi monoidami i lwr półgrupami.
Aktualizacja :
Udało mi się znaleźć potencjalnego kandydata do takiej konstrukcji. Rozważać$(S, \cdot, e)$ gdzie $e:S\to S$ jest operacją jednoargumentową z tożsamościami $e(x)x \approx x$ i $e(x)e(y)e(x)y \approx y$.
Takie struktury uogólniają monoidy, ponieważ jeśli $f$ jest więc lewą tożsamością $e(x) \equiv f$daje nam strukturę powyższego typu. Co więcej, każda półgrupa, która spełnia te relacje, jest półgrupą lwr, ponieważ$xa = xb$ sugeruje $a = e(a)b$ i $b = e(b)a$ po to aby $a = e(a)e(b)e(a)b = b$.
Jednak nie mam przykładu, który nie jest lewym monoidem.
Aktualizacja 2 :
znalazłem to $e(x)x\approx x$, $e(x)e(y)e(x)y \approx y$ są równoważne z $e(x)^2 y \approx y$, $e(y)e(x)y \approx e(x)y$.
W szczególności możemy naprawić $x\in S$ i weź $ e = e(x)^2$więc to $ey = y$ dla wszystkich $y\in S$. To znaczy$S$ to lewy monoid.
Aktualizacja 3 :
Małe półgrupy LWR, które nie są monoidami :
Istnieje unikalna półgrupa porządku lwr $3$co nie jest lewym monoidem. Jest ona określona przez macierz \ begin {bmatrix} 1 & 3 & 3 \\ 3 & 2 & 3 \\ 3 & 3 & 3 \ end {bmatrix}
Według moich obliczeń jest $18$ półgrupy porządku $4$ które są lwr, ale nie zostały monoidami, z Id $54, 67, 69, 69^t, 70, 70^t, 77^t, 88, 92, 98, 99^t, 100, 101^t, 102, 102^t, 103^t, 110^t, 112$ w pakiecie GAP Smallsemi, gdzie $t$ oznacza transpozycję tabliczki mnożenia (antyizomorfizm).
Nowa struktura :
Rozważmy $(S, \cdot, e)$ gdzie $e$ jest operacją binarną $e:S\times S\to S$, z tożsamościami $e(x, y) \approx e(y, x)$ i $e(x, y)x\approx x$.
Możesz myśleć, że operacja binarna jest wyborem lokalnych tożsamości lewostronnych, które wiążą dwa elementy $x, y$ razem, wymagając $e(x, y)$ być zarówno lokalną lewą tożsamością $x$ i $y$.
Jeśli $S$ to lewy monoid z lewą tożsamością $f$, możemy wziąć $e(x, y) \equiv f$.
Każda taka struktura jest półgrupą lwr, ponieważ $xa = xb$ dla wszystkich $x$ sugeruje $e(a, b)a = e(a, b)b$, i to oznacza, że $a = b$.
Takie struktury są omówione tutaj i tutaj .
Aktualizacja 4:
Wydaje się, że istnieje inna klasa półgrup, które są słabo redukcyjne! Są to półgrupy indukowane przez (małe) kategorie. Konstrukcję można znaleźć tutaj w odpowiedzi @ J.-E.Pin.
Jeśli $(S, \cdot)$ jest indukowana kategorią $\mathcal{C}$, i $x\cdot f = x\cdot g$ dla wszystkich $x\in S$ i morfizmy $f, g$ z $\mathcal{C}$, a następnie biorąc $x = 1_X$ gdzie $X$ jest domeną $f$, $f = 1_X\cdot g$. W szczególności,$1_X\cdot g = 1_X\circ g$ jest zdefiniowany jako równy $g$. Jeśli$x\cdot f = x\cdot 0 = 0$ dla wszystkich $x\in S$ i morfizm $f$ z $\mathcal{C}$, to jak poprzednio $f = 0$. Sprzeczność.
Dowodzi to, że wszystkie półgrupy indukowane przez (małe) kategorie są słabo redukcyjne.
Odpowiedzi
W ten sposób możesz opisać klasę wszystkich lwrs, używając jednej dodatkowej operacji binarnej i jednej operacji trójskładnikowej. Oznaczając dwie operacje za pomocą$w(a,b)$ i $r(a,b,c)$, rozważ różnorodność zdefiniowaną przez łączność $\cdot$ i tożsamości $$r(a,b,w(a,b)\cdot a)=a,\\ r(a,b,w(a,b)\cdot b)=b.$$ Zauważ, że jeśli te tożsamości są zachowane, to dla dowolnego $a\neq b$ musimy mieć $w(a,b)\cdot a\neq w(a,b)\cdot b$, co implikuje półgrupę $(S,\cdot)$ jest lwr dla każdej takiej algebry $(S,\cdot,w,r)$.
I odwrotnie, jeśli półgrupa $(S,\cdot)$ jest lwr, to dla dowolnego $a\neq b$ jest trochę $w(a,b)$ takie że $w(a,b)\cdot a\neq w(a,b)\cdot b$. Użyj tych wartości do zdefiniowania$w$, ustawienie $w(a,a)$dowolnie. Możemy teraz zdefiniować$r(a,b,c)$ w taki sposób, że się równa $a$ Jeśli $c=w(a,b)\cdot a$, $b$ Jeśli $c=w(a,b)\cdot b$ i przyjmuje jakąkolwiek wartość dla wszystkich innych $c$. Następnie$(S,\cdot,w,r)$ spełnia powyższe tożsamości.