Python - rozwiązywanie równania belki Bernoulliego za pomocą scipy
Proces odpowiadania na pytanie już się rozpoczął w pytaniu pod linkiem poniżej, ale ten temat dotyczył w szczególności integracji funkcji, na którą udzielono odpowiedzi. Więc dodałem nowe pytanie.
Python - integracja funkcji i wykreślanie wyników
PROBLEM: jak rozwiązać równanie belki y '' (x) = M (x) / (E * I) za pomocą całkowania scipy.
SOLUTION, dzięki uprzejmości gboffi:
#---------- DESCRIPTION
# cantilever beam with point load P at the free end
# original beam equation: y''(x) = M(x)/(E*I)
# moment equation: M(x) = -P*x
# x goes from the free end to the clamped end
# we have a second order diff eq: y''(x) = x
# we implement a new function:
# h = y',
# h' = y'' = M(x) = x
# we get a system of two ODE of first order
# y' = h
# h' = x
# we write the equations in vector form
# Y' = F(x, Y(x)) = F(x,Y)
# we define a function that returns the original values
#----------- CODE
from __future__ import division
from numpy import linspace
from scipy.integrate import solve_ivp
import matplotlib.pyplot as plt
# Exact solution, E*Iy = const, y1 = y', y0 = y,
w = 10 #beam cross sec width (mm)
h = 10 #beam cross sec height (mm)
Iy = (w*h**3)/12 #cross sec moment of inertia (mm^4)
E = 200000 #steel elast modul (N/mm^2)
L = 100 #beam length(mm)
P = 100 #point load (N)
x = linspace(0, L, 51)
y1 = (-P/(2*E*Iy))*x**2+(P*L**2)/(2*E*Iy)
y0 = (-P/(6*E*Iy))*x**3+((P*L**2)/(2*E*Iy))*x-(2*P*L**3)/(6*E*Iy)
# Define the vector function for E=const for integration
def F(x,Y):
#unpack the vector function
y = Y[0]
h = Y[1]
#compute the derivatives
dy_dx = h
dh_dx = (-P/(E*Iy))*x
#return the vector of derivatives values
return [dy_dx, dh_dx]
# Numerical solution
s = solve_ivp(
F, # Y[0]=y0, Y[1]=y1, dy0dx=y1, dy1dx=x
[L, 0.0], # interval of integration (NB: reversed, because...)
[0.0, 0.0], # initial conditions (at the 1st point of integ interval)
t_eval=linspace(L, 0, 101) # where we want the solution to be known
)
# Plotting
fig, (ax1, ax2) = plt.subplots(2)
ax1.plot(x, y0, label="Exact y")
ax2.plot(x, y1, label="Exact y'")
ax1.plot(s.t[::2], s.y[0][::2], label="Numeric y", linestyle='', marker='.')
ax2.plot(s.t[::2], s.y[1][::2], label="Numeric y'", linestyle='', marker='.')
plt.show()
DOKŁADNE ROZWIĄZANIE: dokładne rozwiązanie uzyskuje się przez dwukrotne całkowanie równania belki za pomocą całek oznaczonych i użycie warunków brzegowych do zdefiniowania stałych całkowych. Wszystko jest wyjaśnione w powyższym linku wiki. Poniżej znajduje się kod do wykreślenia y '' (x), y '(x) (nachylenie) iy (x) (ugięcie). Schemat jest odwrócony, wolny koniec belki znajduje się na x = 0.
from __future__ import division #to enable normal floating division
import numpy as np
import matplotlib.pyplot as plt
# Beam parameters
w = 10 #beam cross sec width (mm)
h = 10 #beam cross sec height (mm)
I = (w*h**3)/12 #cross sec moment of inertia (mm^4)
I1 = (w*h**3)/12
E = 200000 #steel elast modul (N/mm^2)
L = 100 #beam length(mm)
F = 100 #force (N)
# Define equations
def d2y_dx2(x):
return (-F*x)/(E*I)
def dy_dx(x):
return (1/(E*I))*(-0.5*F*x**2 + 0.5*F*L**2)
def y(x):
return (1/(E*I))*(-(1/6)*F*(x**3) + (1/2)*F*(L**2)*x - (1/3)*F*(L**3))
# Plot
fig, (ax1, ax2, ax3) = plt.subplots(3)
a = 0
b = L
x = np.linspace(a,b,100)
ax1.plot(x, d2y_dx2(x))
ax2.plot(x, dy_dx(x))
ax3.plot(x, y(x))
plt.show()

PRZYBLIŻONE ROZWIĄZANIE (RODZAJ): poniższy kod został stworzony przez willcrack. Kształt wygląda lepiej niż w poprzednim pytaniu, ale wartości nadal nie są prawidłowe.
from scipy import integrate
import numpy as np
import matplotlib.pyplot as plt
# Beam parameters
L = 100
w = 10
h = 10
I = (w*h**3)/12
E = 200000
F = 100
# Integration parameters
a = 0.0
b = L
# Define the beam equation
def d2y_dx2(x,y=None):
return (-F*x)/(E*I)
# Define the integration1 - slope
def slope(x):
slope_res = np.zeros_like(x)
for i,val in enumerate(x):
y,err = integrate.quad(f,a,val)
slope_res[i]=y
return slope_res
# Define the integration1 - deflection
def defl(x):
defl_res = np.zeros_like(x)
for i,val in enumerate(x):
y, err = integrate.dblquad(d2y_dx2,0,val, lambda x: 0, lambda x: val)
defl_res[i]=y
return defl_res
# Plot
fig, (ax1, ax2, ax3) = plt.subplots(3)
t = np.linspace(a,b,100)
t1 = np.linspace(a,b,100)
ax1.plot(t, d2y_dx2(t))
ax2.plot(t, slope(t))
ax3.plot(t1, defl(t1))
plt.show()

Odpowiedzi
Całkujesz równanie różniczkowe, twoje podejście do obliczania w pętli całek oznaczonych jest, powiedzmy, nieoptymalne.
Standardowym podejściem w Scipy jest użycie scipy.integrate.solve_ivp, który wykorzystuje odpowiednią metodę integracji (domyślnie Runge-Kutta 45) w celu dostarczenia rozwiązania w postaci specjalnego obiektu.
Jak zwykle w dziedzinie całkowania numerycznego równań różniczkowych zwyczajnych, metoda jest ograniczona do układu równań różniczkowych pierwszego rzędu, ale równanie drugiego stopnia można przekształcić w układ równań pierwszego stopnia wprowadzających funkcję pomocniczą
Y" = M ⇒ {y' = h, h' = M}
Choć brzmi to skomplikowanie, jego implementacja jest dość prosta
In [51]: #########################################################################
...: # L, EJ = 1.0
...: #########################################################################
...: # exact solution
...: from numpy import linspace
...: x = linspace(0, 1, 51)
...: y1, y0 = (x**2-1)/2, (x**3-3*x+2)/6
...: #########################################################################
...: # numerical solution
...: from scipy.integrate import solve_ivp
...: s = solve_ivp(
...: lambda x, Y: [Y[1], x], # Y[0]=y0, Y[1]=y1, dy0dx=y1, dy1dx=x
...: [1.0, 0.0], # interval of integration (NB: reversed, because...)
...: [0.0, 0.0], # initial conditions (at the 1st point of integ interval)
...: t_eval=np.linspace(1, 0, 101) # where we want the solution to be known
...: )
...: #########################################################################
...: # plotting
...: from matplotlib.pyplot import grid, legend, plot
...: plot(x, y0, label="Exact y")
...: plot(x, y1, label="Exact y'")
...: plot(s.t[::2], s.y[0][::2], label="Numeric y", linestyle='', marker='.')
...: plot(s.t[::2], s.y[1][::2], label="Numeric y'", linestyle='', marker='.')
...: legend() ; grid() ;
In [52]:

OP poinformował o zrozumieniu problemu solve_ivp(lambda x, Y: [Y[1], x], ...
.
Mamy system ODE pierwszego rzędu w normalnej postaci
y₁' = f₁(x, y₁(x), …, yₙ(x))
… = …
yₙ' = f₁(x, y₁(x), …, yₙ(x))
które można zapisać, używając wielkich liter do oznaczenia wielkości wektorowych
Y' = F(x, Y(x))
do rozwiązania układu równań różniczkowych solve_ipv
potrzebna jest właśnie ta F(x, Y)
funkcja.
Zamiast wyrażenia lambda można by napisać definicję funkcji podobną do poniższej, która prawdopodobnie jest bardziej zrozumiała
def F(x, Y):
# unpack the vector of function values
y = Y[0]
h = Y[1]
# compute the derivatives
dy_over_dx = h
dh_over_dx = x
# return the vector of derivatives values
return [dy_over_dx, dh_over_dx]
s = solve_ivp(F, …)
która w odpowiedzi była zwięzła (zbyt zwięzła?) została wyrażona jako lambda x,Y:[Y[1],x]
…