rozwiązywanie, następujący limit
Oto więc pytanie:

Mógłbym to częściowo rozwiązać, oto moje podejście: Granicą jest forma $(A+B)/C$ gdzie $A$ i $B$ oba podejścia $e^3$ podczas $C$ podejścia $0$,
Można to sprawdzić, po prostu oceniając $A$ i $B$ osobno.
Teraz możemy zapisać limit jako $$ \lim_{t \to 0} [(1+3t+2t^2)^{1/t} - e^3]/t -\lim_{t \to 0} [(1+3t-2t^2)^{1/t} - e^3]/t $$
ale nie mogłem ocenić tych dwóch granic, przynajmniej używając reguły LH, ponieważ pochodna licznika jest dość długim wyrażeniem. Uprzejmie zasugeruj sposób rozwiązania tego pytania, każda pomoc jest bardzo ceniona.
Odpowiedzi
\begin{align} &\lim_{t\to0}\frac{1}{t}\left[(1+3t+2t^2)^{1/t}-(1+3t+2t^2)^{1/t}\right]=\\ &\qquad=\lim_{t\to0}\frac{1}{t}\left[(1+3t+2t^2)^{\frac{1}{3t+2t^2}\frac{3t+2t^2}{t}}-(1+3t-2t^2)^{\frac{1}{3t-2t^2}\frac{3t-2t^2}{t}}\right]=\\ &\qquad=\lim_{t\to0}\frac{1}{t}\left[e^{\frac{3t+2t^2}{t}}-e^{\frac{3t-2t^2}{t}}\right]=\\ &\qquad=e^3\lim_{t\to0}\frac{1}{t}\left[e^{2t}-e^{-2t}\right]=\\ &\qquad=2e^3\lim_{t\to0}\left[\frac{e^{2t}-1}{2t}+\frac{e^{-2t}-1}{-2t}\right]=4e^3 \end{align}
$$A=(1+3t+2t^2)^{\frac 1 t}\implies \log(A)=\frac 1 t \log(1+3t+2t^2)$$ $$ \log(1+3t+2t^2)=3 t-\frac{5 t^2}{2}+3 t^3-\frac{17 t^4}{4}+O\left(t^5\right)$$ $$ \log(A)=3-\frac{5 t}{2}+3 t^2-\frac{17 t^3}{4}+O\left(t^4\right)$$ $$A=e^{\log(A)}=e^3\left(1-\frac{5 t}{2}+\frac{49 t^2}{8}-\frac{689 t^3}{48}\right)+O\left(t^4\right) $$
$$B=(1+3t-2t^2)^{\frac 1 t}\implies \log(B)=\frac 1 t \log(1+3t-2t^2)$$ $$ \log(1+3t-2t^2)=3 t-\frac{13 t^2}{2}+15 t^3-\frac{161 t^4}{4}+O\left(t^5\right)$$ $$ \log(B)=3-\frac{13 t}{2}+15 t^2-\frac{161 t^3}{4}+O\left(t^4\right)$$ $$B=e^{\log(B)}=e^3\left(1-\frac{13 t}{2}+\frac{289 t^2}{8}-\frac{8809 t^3}{48} \right)+O\left(t^4\right) $$ $$A-B=4 e^3 t-30 e^3 t^2+\frac{1015 e^3 t^3}{6}+O\left(t^4\right)$$ $$\frac{A-B}t=4 e^3 -30 e^3 t+\frac{1015 e^3 t^2}{6}+O\left(t^3\right)$$ pokazuje limit i sposób podejścia do niego.
Korzystając z twierdzenia Taylora o logarytmie naturalnym i wykładniczym, mamy to \begin{align} (1+3t+2t^2)^{1/t} &=\exp{\left(\frac{\ln{(1+3t+2t^2)}}t\right)}\\ &=\exp{\left(\frac{(3t+2t^2)-(3t+2t^2)^2/2+o(t^2)}t\right)}\\ &=\exp{\left(3-\frac52t+o(t)\right)}\\ &=e^3\exp{\left(-\frac52t+o(t)\right)}\\ &=e^3\left(1-\frac52t+o(t)\right) \end{align} i podobnie mamy $$(1+3t-2t^2)^{1/t}=e^3\left(1-\frac{13}2t+o(t)\right)$$ Więc twój limit jest sprawiedliwy \begin{align} \lim_{t\to0}\frac{e^3\left(1-\frac52t+o(t)\right)-e^3\left(1-\frac{13}2t+o(t)\right)}t &=\lim_{t\to0}\frac{4e^3t+o(t)}t\\ &=\lim_{t\to0}(4e^3+o(1))\\ &=\boxed{4e^3}\\ \end{align}