TikZ: Rozszerz skok

Nov 29 2020

Próbuję narysować spirale i zadałem to pytanie kilka dni temu. Odpowiedź przez hpekristiansen jest wielki i bardzo pomaga, ale ponieważ nie jest jasne, czy spirala jest prawy- czy leworęczny, patrząc na obraz, wygląda nieco dziwnie w moim pożądanego kontekście. Dzisiaj hpekristiansen sam zadał pytanie na ten temat i otrzymał bardzo pomocną odpowiedź od TikZling . Szczególnie podoba mi się odpowiedź za pomocą \foreachpętli do narysowania poszczególnych segmentów. Pozostała kwestia polega na tym, że nie mogę skorzystać z doubleopcji ścieżki, ponieważ byłaby ona widoczna na innym niż białym tle lub jak w moim przypadku pręty otaczające spiralę.

Rozwiązaniem tego problemu byłoby obcięcie ścieżek nieparzystych (zaczynając od trzeciej), w których przecinają się ścieżki parzyste. Niestety, \path [clip]w Ti k Z używa tylko środka ścieżki do obcięcia czegoś i nie ma opcji ustawiania szerokości linii, która byłaby całkowicie obcięta. Dlatego zastanawiałem się, czy możliwe jest rozszerzenie ścieżki o danej szerokości linii do kształtu, tak jak jest to możliwe w przypadku oprogramowania do grafiki wektorowej, takiego jak Adobe Illustrator czy Affinity Designer.

Podczas rysowania spirali w kilku sekcjach (lewa część pętli i prawa część pętli) pozwoliłoby to na użycie kodu podobnego do poniższego przykładu:

\documentclass[tikz]{standalone}

\begin{document}
    \begin{tikzpicture}[even odd rule]
        \newcommand{\radiusX}{0.7}
        \newcommand{\radiusY}{1.5}
        \newcommand{\strokeWidth}{0.1}
        \newcommand{\strokeWidthExtra}{0.1}
    
        \newcommand{\background}{({-\radiusX-1},-1) rectangle ({8+\radiusX+1},{2*\radiusY+1})}
        
        \newcommand{\leftArc}{
            (0.5, 0) 
                -- (0, 0) 
                arc (-90:-270:{\radiusX} and {\radiusY}) 
                -- ++(0, -\strokeWidth) 
                arc (90:270:{\radiusX-\strokeWidth} and {\radiusY-\strokeWidth}) 
                -- ++(0.5,0) 
                -- ++(0,-\strokeWidth) 
                -- cycle
        }
        
        \newcommand{\leftArcBig}{
            ({0.5+\strokeWidthExtra}, -\strokeWidthExtra) 
                -- ++({-0.5-\strokeWidthExtra}, 0) 
                arc (-90:-270:{\radiusX+\strokeWidthExtra} and {\radiusY+\strokeWidthExtra}) 
                -- ++(0, {-\strokeWidth-2*\strokeWidthExtra}) 
                arc (90:270:{\radiusX-\strokeWidth-\strokeWidthExtra} and {\radiusY-\strokeWidth-\strokeWidthExtra}) 
                -- ++({0.5+\strokeWidthExtra},0) 
                -- ++(0,{-\strokeWidth+2*\strokeWidthExtra}) 
                -- cycle
        }
        
        \newcommand{\rightArc}{
            (-0.5,0) 
                -- (0,0) 
                arc (-90:90:{\radiusX} and {\radiusY}) 
                -- ++(0,-\strokeWidth) 
                arc (90:-90:{\radiusX-\strokeWidth} and {\radiusY-\strokeWidth}) 
                -- ++(-0.5,0) 
                -- ++(0,-{\strokeWidth}) 
                -- cycle
        }
        
        \newcommand{\rightArcBig}{
            (-{0.5-\strokeWidthExtra},-{\strokeWidthExtra}) 
                -- ++({0.5+\strokeWidthExtra},0) 
                arc (-90:90:{\radiusX+\strokeWidthExtra} and {\radiusY+\strokeWidthExtra}) 
                -- ++(0,{-\strokeWidth-2*\strokeWidthExtra}) 
                arc (90:-90:{\radiusX-\strokeWidth-\strokeWidthExtra} and {\radiusY-\strokeWidth-\strokeWidthExtra}) 
                -- ++({-0.5-\strokeWidthExtra},0) 
                -- ++(0,{-\strokeWidth-2*\strokeWidthExtra}) 
                -- cycle
        }
        
        \shade[clip, top color = gray, bottom color = lightgray] \background;
            
        \begin{scope}
            \fill [black] \rightArc;
            \clip \rightArcBig \background;
                
            \fill [black] \leftArc;
        \end{scope}
        
        \begin{scope}[xshift = 2cm]
            \fill [yellow] \rightArc;
            \fill [yellow, fill opacity = 0.3] \rightArcBig;
            \fill [red] \leftArc;
            \fill [red, fill opacity = 0.3] \leftArcBig;
        \end{scope}
        
        \begin{scope}[xshift = 6cm]
            \fill [black] \leftArc;
            \clip \leftArcBig \background;
                
            \fill [black] \rightArc;
        \end{scope}
        
        \begin{scope}[xshift = 8cm]
            \fill [yellow] \leftArc;
            \fill [yellow, fill opacity = 0.3] \leftArcBig;
            \fill [red] \rightArc;
            \fill [red, fill opacity = 0.3] \rightArcBig;
        \end{scope}
        
    \end{tikzpicture}
\end{document}

Odpowiedzi

4 Noname Nov 29 2020 at 10:21

Niezupełnie odpowiedź. Pytasz, czy istnieje sposób na skonstruowanie obwiedni ścieżki. Odpowiedź brzmi: nie ma wbudowanego ani prostego sposobu, aby to osiągnąć. Co gorsza, istnieje analityczny dowód, że nie ma prostej i ogólnej drogi . Aby docenić dowód, przypomnij sobie, że wszystko, co Ti k Z może zrobić, to skonstruować krzywe Béziera. Pamiętaj, że to nie oznacza, że ​​nie ma nie tak prostego sposobu. W rzeczywistości fakt, że MetaPost i przyjaciele mają na to procedury, mówią, że w zasadzie jest to możliwe.

Innym narzędziem, które to potrafi, jest przeglądarka. OK, pozwólmy widzowi wykonać brudną robotę. Pozwala to rozwiązać problem w inny sposób, koncepcyjnie taki sam, jak ten post : fadings. Niezbyt wygodne, przynajmniej nie poniższa implementacja, ale dowód zasady. Zasadniczo można przekonwertować poziom szarości na przezroczystość, dzięki czemu czarna lub biała linia będzie przezroczysta. Ten obiekt można umieścić na dowolnym tle. (Czy wspomniałem już, że ta implementacja nie jest wygodna?)

\documentclass{standalone}
\usepackage{tikz}
\usetikzlibrary{decorations.pathreplacing,fadings}%
\begin{document}
\begin{tikzfadingfrompicture}[name=custom fade]%
\tikzset{path decomposition/.style={%
    postaction={decoration={show path construction,
    lineto code={
      \draw[#1]  (\tikzinputsegmentfirst) -- (\tikzinputsegmentlast);
    },
    curveto code={
      \draw[#1]  (\tikzinputsegmentfirst) .. controls
        (\tikzinputsegmentsupporta) and (\tikzinputsegmentsupportb)
        ..(\tikzinputsegmentlast) ;
    },
    closepath code={
      \draw[#1]  (\tikzinputsegmentfirst) -- (\tikzinputsegmentlast) {closepath};} }
    ,decorate}},
    cv/.style={black, double=white,line width=0.6mm,double distance=1.2mm}}
\draw[cv,samples=201,domain=-2*pi:2*pi,smooth,
 path decomposition={cv,shorten <=-0.05pt,shorten >=-0.05pt}]
 plot (\x, {cos(10*\x r)} , {sin(10*\x r)} );
\end{tikzfadingfrompicture}%
\begin{tikzpicture}
  \shade[clip, top color = gray!50!black, bottom color = gray!10] 
       (0,-2) rectangle (6,2);
 \path[path fading=custom fade,fit fading=false,
      fill=black] (0,-2) rectangle (8,2);
\end{tikzpicture}
\end{document}

4 AndrewStacey Nov 29 2020 at 22:56

Zupełnie przez przypadek pracowałem nad kodem, który może ci pomóc. Służy do dzielenia ścieżki w punktach przecięcia.

Opiera się na mojej spath3( ctan i github ) bibliotece, która zapewnia strukturę do manipulowania ścieżkami po ich zdefiniowaniu, ale przed ich naprawieniem .

Jest to zdecydowanie kod eksperymentalny i podlega zmianom, ale warto byłoby uzyskać informacje zwrotne, czy ma sens i co sprawi, że będzie przydatny.

\documentclass{article}

\usepackage{xparse}
\usepackage{tikz}
\usepackage{spath3}
\usetikzlibrary{intersections,hobby,patterns}

\ExplSyntaxOn

\tikzset{
  append~ spath/.code={
    \spath_get_current_path:n {current path}
    \spath_append:nn { current path } { #1 }
    \spath_set_current_path:n { current path }
  },
  set~ spath/.code={
    \spath_set_current_path:n { #1 }
    \spath_get:nnN {#1} {final point} \l__spath_tmpa_tl
    \tl_set:Nx \l__spath_tmpa_tl
    {
      \exp_not:c {tikz@lastx}=\tl_item:Nn \l__spath_tmpa_tl {1}
      \exp_not:c {tikz@lasty}=\tl_item:Nn \l__spath_tmpa_tl {2}
      \exp_not:c {tikz@lastxsaved}=\tl_item:Nn \l__spath_tmpa_tl {1}
      \exp_not:c {tikz@lastysaved}=\tl_item:Nn \l__spath_tmpa_tl {2}
    }
    \tl_use:N \l__spath_tmpa_tl
  },
  shorten~spath~at~end/.code~ 2~ args={
    \spath_shorten:nn {#1} {#2}
  },
  shorten~spath~at~start/.code~ 2~ args ={
    \spath_reverse:n {#1}
    \spath_shorten:nn {#1} {#2}
    \spath_reverse:n {#1}
  },
  shorten~spath~both~ends/.code~ 2~ args={
    \spath_shorten:nn {#1} {#2}
    \spath_reverse:n {#1}
    \spath_shorten:nn {#1} {#2}
    \spath_reverse:n {#1}
  },
  globalise~ spath/.code={
    \spath_globalise:n {#1}
  },
  translate~ spath/.code~ n~ args={3}{
    \spath_translate:nnn {#1}{#2}{#3}
  },
  split~ at~ self~ intersections/.code~ 2~ args={
    \use:c {tikz@addmode}{
      \group_begin:
      \spath_get_current_path:n {spath split tmpa}
      \spath_split_at_self_intersections:nnn {spath split tmpa} {#1} {#2}
      \group_end:
    }
  },
  split~ at~ intersections/.code~ n~ args={5}{
    \spath_split_at_intersections:nnnnn {#1}{#2}{#3}{#4}{#5}
  }
}


\tl_new:N \l__spath_shorten_fa_tl
\tl_new:N \l__spath_shorten_path_tl
\tl_new:N \l__spath_shorten_last_tl
\int_new:N \l__spath_shorten_int
\fp_new:N \l__spath_shorten_x_fp
\fp_new:N \l__spath_shorten_y_fp

\cs_new_nopar:Npn \spath_shorten:nn #1#2
{
  \group_begin:
  \spath_get:nnN {#1} {final action} \l__spath_shorten_fa_tl
  \spath_get:nnN {#1} {path} \l__spath_shorten_path_tl
  \tl_reverse:N \l__spath_shorten_path_tl

  \tl_clear:N \l__spath_shorten_last_tl
  \tl_if_eq:NNTF \l__spath_shorten_fa_tl \g__spath_curveto_tl
  {
    \int_set:Nn \l__spath_shorten_int {3}
  }
  {
    \int_set:Nn \l__spath_shorten_int {1}
  }

  \prg_replicate:nn { \l__spath_shorten_int }
  {
    \tl_put_right:Nx \l__spath_shorten_last_tl
    {
      {\tl_head:N \l__spath_shorten_path_tl}
    }
    \tl_set:Nx \l__spath_shorten_path_tl {\tl_tail:N \l__spath_shorten_path_tl}
    \tl_put_right:Nx \l__spath_shorten_last_tl
    {
      {\tl_head:N \l__spath_shorten_path_tl}
    }
    \tl_set:Nx \l__spath_shorten_path_tl {\tl_tail:N \l__spath_shorten_path_tl}
    \tl_put_right:Nx \l__spath_shorten_last_tl
    {
      \tl_head:N \l__spath_shorten_path_tl
    }
    \tl_set:Nx \l__spath_shorten_path_tl {\tl_tail:N \l__spath_shorten_path_tl}
  }

  \tl_put_right:Nx \l__spath_shorten_last_tl
  {
    {\tl_item:Nn \l__spath_shorten_path_tl {1}}
    {\tl_item:Nn \l__spath_shorten_path_tl {2}}
  }
  \tl_put_right:NV \l__spath_shorten_last_tl \g__spath_moveto_tl
  
  \tl_reverse:N \l__spath_shorten_path_tl

  \fp_set:Nn \l__spath_shorten_x_fp
  {
    \dim_to_fp:n {\tl_item:Nn \l__spath_shorten_last_tl {4}}
    -
    \dim_to_fp:n {\tl_item:Nn \l__spath_shorten_last_tl {1}}
  }
  
  \fp_set:Nn \l__spath_shorten_y_fp
  {
    \dim_to_fp:n {\tl_item:Nn \l__spath_shorten_last_tl {5}}
    -
    \dim_to_fp:n {\tl_item:Nn \l__spath_shorten_last_tl {2}}
  }

  \fp_set:Nn \l__spath_shorten_len_fp
  {
    sqrt( \l__spath_shorten_x_fp * \l__spath_shorten_x_fp +  \l__spath_shorten_y_fp *  \l__spath_shorten_y_fp )
  }

  \fp_set:Nn \l__spath_shorten_len_fp
  {
    (\l__spath_shorten_len_fp - #2)/ \l__spath_shorten_len_fp
  }

  \tl_reverse:N \l__spath_shorten_last_tl
  
  \tl_if_eq:NNTF \l__spath_shorten_fa_tl \g__spath_curveto_tl
  {
    \fp_set:Nn \l__spath_shorten_len_fp
    {
      1 - (1 -\l__spath_shorten_len_fp)/3
    }
    \spath_split_curve:VVNN \l__spath_shorten_len_fp \l__spath_shorten_last_tl
    \l__spath_shorten_lasta_tl
    \l__spath_shorten_lastb_tl
  }
  {
    \spath_split_line:VVNN \l__spath_shorten_len_fp \l__spath_shorten_last_tl
    \l__spath_shorten_lasta_tl
    \l__spath_shorten_lastb_tl
  }

  \prg_replicate:nn {3}
  {
    \tl_set:Nx \l__spath_shorten_lasta_tl {\tl_tail:N \l__spath_shorten_lasta_tl}
  }

  \tl_put_right:NV \l__spath_shorten_path_tl \l__spath_shorten_lasta_tl

  \tl_gset_eq:NN \l__spath_smuggle_tl \l__spath_shorten_path_tl
  \group_end:

  \spath_clear:n {#1}
  \spath_put:nnV {#1} {path} \l__spath_smuggle_tl
}

\cs_generate_variant:Nn \spath_shorten:nn {Vn, VV}
\cs_generate_variant:Nn \spath_reverse:n {V}
\cs_generate_variant:Nn \spath_append_no_move:nn {VV}
\cs_generate_variant:Nn \spath_prepend_no_move:nn {VV}

\cs_new_nopar:Npn \spath_intersect:nn #1#2
{
  \spath_get:nnN {#1} {path} \l__spath_tmpa_tl
  \spath_get:nnN {#2} {path} \l__spath_tmpb_tl
  \pgfintersectionofpaths%
  {%
    \pgfsetpath\l__spath_tmpa_tl
  }{%
    \pgfsetpath\l__spath_tmpb_tl
  }
}

\cs_generate_variant:Nn \spath_intersect:nn {VV, Vn}

\cs_new_nopar:Npn \spath_split_line:nnNN #1#2#3#4
{
  \group_begin:
  \tl_gclear:N \l__spath_smuggle_tl
  \tl_set_eq:NN \l__spath_tmpa_tl \g__spath_moveto_tl
  \tl_put_right:Nx \l__spath_tmpa_tl {
    {\tl_item:nn {#2} {2}}
    {\tl_item:nn {#2} {3}}
  }
  \tl_put_right:NV \l__spath_tmpa_tl \g__spath_lineto_tl
  \tl_put_right:Nx \l__spath_tmpa_tl
  {
    {\fp_to_dim:n
    {
      (1 - #1) * \tl_item:nn {#2} {2} + (#1) * \tl_item:nn {#2} {5}
    }}
    {\fp_to_dim:n
    {
      (1 - #1) * \tl_item:nn {#2} {3} + (#1) * \tl_item:nn {#2} {6}
    }}
  }
  \tl_gset_eq:NN \l__spath_smuggle_tl \l__spath_tmpa_tl
  \group_end:
  \tl_set_eq:NN #3 \l__spath_smuggle_tl
  \group_begin:
  \tl_gclear:N \l__spath_smuggle_tl
  \tl_set_eq:NN \l__spath_tmpa_tl \g__spath_moveto_tl
  \tl_put_right:Nx \l__spath_tmpa_tl
  {
    {\fp_to_dim:n
    {
      (1 - #1) * \tl_item:nn {#2} {2} + (#1) * \tl_item:nn {#2} {5}
    }}
    {\fp_to_dim:n
    {
      (1 - #1) * \tl_item:nn {#2} {3} + (#1) * \tl_item:nn {#2} {6}
    }}
  }
  \tl_put_right:NV \l__spath_tmpa_tl \g__spath_lineto_tl
  \tl_put_right:Nx \l__spath_tmpa_tl {
    {\tl_item:nn {#2} {5}}
    {\tl_item:nn {#2} {6}}
  }
  \tl_gset_eq:NN \l__spath_smuggle_tl \l__spath_tmpa_tl
  \group_end:
  \tl_set_eq:NN #4 \l__spath_smuggle_tl
}

\cs_generate_variant:Nn \spath_split_line:nnNN {nVNN, VVNN}

\int_new:N \l__spath_split_int
\int_new:N \l__spath_splitat_int
\fp_new:N \l__spath_split_fp
\bool_new:N \l__spath_split_bool
\tl_new:N \l__spath_split_path_tl
\tl_new:N \l__spath_split_patha_tl
\tl_new:N \l__spath_split_pathb_tl
\tl_new:N \l__spath_split_intoa_tl
\tl_new:N \l__spath_split_intob_tl
\dim_new:N \l__spath_splitx_dim
\dim_new:N \l__spath_splity_dim

\cs_new_nopar:Npn \spath_split_at:nnnn #1#2#3#4
{
  \group_begin:
  \int_set:Nn \l__spath_splitat_int {\fp_to_int:n {floor(#2) + 1}}
  \fp_set:Nn \l__spath_split_fp {#2 - floor(#2)}
  \int_zero:N \l__spath_split_int
  \bool_set_true:N \l__spath_split_bool

  \spath_get:nnN {#1} {path} \l__spath_split_path_tl
  \tl_clear:N \l__spath_split_patha_tl

  \dim_zero:N \l__spath_splitx_dim
  \dim_zero:N \l__spath_splity_dim

  \bool_until_do:nn {
    \tl_if_empty_p:N \l__spath_split_path_tl
    ||
    \int_compare_p:n { \l__spath_splitat_int == \l__spath_split_int  }
  }
  {
    \tl_set:Nx \l__spath_tmpc_tl {\tl_head:N \l__spath_split_path_tl}
    \tl_set:Nx \l__spath_split_path_tl {\tl_tail:N \l__spath_split_path_tl }
    \tl_case:Nn \l__spath_tmpc_tl
    {
      \g__spath_lineto_tl
      {
        \int_incr:N \l__spath_split_int
      }
      \g__spath_curvetoa_tl
      {
        \int_incr:N \l__spath_split_int
      }
    }
    \int_compare:nT { \l__spath_split_int < \l__spath_splitat_int  }
    {
      \tl_put_right:NV \l__spath_split_patha_tl \l__spath_tmpc_tl
      
      \tl_put_right:Nx \l__spath_split_patha_tl
      {{ \tl_head:N \l__spath_split_path_tl }}
      \dim_set:Nn \l__spath_splitx_dim {\tl_head:N \l__spath_split_path_tl}
      \tl_set:Nx \l__spath_split_path_tl {\tl_tail:N \l__spath_split_path_tl }
      
      \tl_put_right:Nx \l__spath_split_patha_tl
      {{ \tl_head:N \l__spath_split_path_tl }}
      \dim_set:Nn \l__spath_splity_dim {\tl_head:N \l__spath_split_path_tl}
      \tl_set:Nx \l__spath_split_path_tl {\tl_tail:N \l__spath_split_path_tl }
      
    }
  }

  \tl_clear:N \l__spath_split_pathb_tl
  \tl_put_right:NV \l__spath_split_pathb_tl \g__spath_moveto_tl
  \tl_put_right:Nx \l__spath_split_pathb_tl
  {
    {\dim_use:N \l__spath_splitx_dim}
    {\dim_use:N \l__spath_splity_dim}
  }
  \tl_case:Nn \l__spath_tmpc_tl
  {
    \g__spath_lineto_tl
    {
      \tl_put_right:NV \l__spath_split_pathb_tl \l__spath_tmpc_tl
      \tl_put_right:Nx \l__spath_split_pathb_tl
      {{ \tl_head:N \l__spath_split_path_tl }}
      \tl_set:Nx \l__spath_split_path_tl {\tl_tail:N \l__spath_split_path_tl }
      
      \tl_put_right:Nx \l__spath_split_pathb_tl
      {{ \tl_head:N \l__spath_split_path_tl }}
      \tl_set:Nx \l__spath_split_path_tl {\tl_tail:N \l__spath_split_path_tl }
      
      \spath_split_line:VVNN \l__spath_split_fp \l__spath_split_pathb_tl
      \l__spath_split_intoa_tl
      \l__spath_split_intob_tl

      \prg_replicate:nn {3} {
        \tl_set:Nx \l__spath_split_intoa_tl {\tl_tail:N \l__spath_split_intoa_tl}
      }

      \tl_put_right:NV \l__spath_split_patha_tl \l__spath_split_intoa_tl
      \tl_put_right:NV \l__spath_split_intob_tl \l__spath_split_path_tl
    }
    \g__spath_curvetoa_tl
    {
      \tl_put_right:NV \l__spath_split_pathb_tl \l__spath_tmpc_tl
      \tl_put_right:Nx \l__spath_split_pathb_tl
      {{ \tl_head:N \l__spath_split_path_tl }}
      \tl_set:Nx \l__spath_split_path_tl {\tl_tail:N \l__spath_split_path_tl }
      
      \tl_put_right:Nx \l__spath_split_pathb_tl
      {{ \tl_head:N \l__spath_split_path_tl }}
      \tl_set:Nx \l__spath_split_path_tl {\tl_tail:N \l__spath_split_path_tl }
      
      \prg_replicate:nn {2} {
        
        \tl_put_right:Nx \l__spath_split_pathb_tl
        { \tl_head:N \l__spath_split_path_tl }
        \tl_set:Nx \l__spath_split_path_tl {\tl_tail:N \l__spath_split_path_tl }
        
        \tl_put_right:Nx \l__spath_split_pathb_tl
        {{ \tl_head:N \l__spath_split_path_tl }}
        \tl_set:Nx \l__spath_split_path_tl {\tl_tail:N \l__spath_split_path_tl }
      
        \tl_put_right:Nx \l__spath_split_pathb_tl
        {{ \tl_head:N \l__spath_split_path_tl }}
        \tl_set:Nx \l__spath_split_path_tl {\tl_tail:N \l__spath_split_path_tl }
      }

      \spath_split_curve:VVNN \l__spath_split_fp \l__spath_split_pathb_tl
      \l__spath_split_intoa_tl
      \l__spath_split_intob_tl

      \prg_replicate:nn {3} {
        \tl_set:Nx \l__spath_split_intoa_tl {\tl_tail:N \l__spath_split_intoa_tl}
      }

      \tl_put_right:NV \l__spath_split_patha_tl \l__spath_split_intoa_tl
      \tl_put_right:NV \l__spath_split_intob_tl \l__spath_split_path_tl
    }
  }

  \spath_gclear_new:n {#3}
  \spath_gput:nnV {#3} {path} \l__spath_split_patha_tl
  \spath_gclear_new:n {#4}
  \spath_gput:nnV {#4} {path} \l__spath_split_intob_tl
  \group_end:
}

\cs_generate_variant:Nn \spath_split_at:nnnn {VVnn, Vnnn}

\cs_new_nopar:Npn \spath_explode_into_list:nn #1#2
{
  \tl_clear_new:c {l__spath_list_#2}

  \int_zero:N \l__spath_tmpa_int
  \spath_map_segment_inline:nn {#1} {
    \tl_if_eq:NNF ##1 \g__spath_moveto_tl
    {
      \spath_clear_new:n {#2 _ \int_use:N \l__spath_tmpa_int}
      \spath_put:nnV  {#2 _ \int_use:N \l__spath_tmpa_int} {path} ##2
      \tl_put_right:cx {l__spath_list_#2} {{#2 _ \int_use:N \l__spath_tmpa_int}}
      \int_incr:N \l__spath_tmpa_int
    }
  }
}

\tl_new:N \spathselfintersectioncount

\tl_new:N \l__spath_split_tmpa_tl
\tl_new:N \l__spath_split_path_a_tl
\tl_new:N \l__spath_split_path_b_tl
\tl_new:N \l__spath_split_join_a_tl
\tl_new:N \l__spath_split_join_b_tl
\tl_new:N \l__spath_split_first_tl
\tl_new:N \l__spath_split_second_tl

\tl_new:N \l__spath_split_one_tl
\tl_set:Nn \l__spath_split_one_tl {1}
\tl_new:N \l__spath_split_I_tl
\tl_set:Nn \l__spath_split_I_tl {I}

\int_new:N \l__spath_split_count_int
\int_new:N \l__spath_split_intersection_int
\seq_new:N \l__spath_split_segments_seq
\seq_new:N \l__spath_split_segments_processed_seq
\seq_new:N \l__spath_split_segments_middle_seq

\seq_new:N \l__spath_split_joins_seq
\seq_new:N \l__spath_split_joins_processed_seq
\seq_new:N \l__spath_split_joins_middle_seq

\seq_new:N \l__spath_split_intersections_seq

\bool_new:N \l__spath_split_join_bool

% We'll run this on each segment
%
% Arguments:
%  1. Path to split
%  2. Prefix for name of new paths
%  3. List of how to split at intersections
%     A - don't split first path at intersection
%     B - don't split second path at intersection
%     C - split both paths at intersection
%
\cs_new_nopar:Npn \spath_split_at_self_intersections:nnn #1#2#3
{
  \group_begin:
  % The third argument says whether to rejoin segments at the intersections
  \seq_set_split:Nnn \l__spath_split_intersections_seq {} {#3}
  % Clone the path as we'll mess around with it
  \spath_clone:nn {#1} {spath split tmp}
  % Clear the sequence of joining information
  % The join information says whether to rejoin a segment to its predecessor
  \seq_clear:N \l__spath_split_joins_seq
  % Check the last action to see if it is a close path
  \spath_get:nnN {spath split tmp} {final action} \l__spath_split_tmpa_tl
  \tl_if_eq:NNTF \l__spath_split_tmpa_tl \g__spath_closepath_tl
  {
    % Last action is a close, so mark it as needing rejoining
    \seq_put_right:Nn \l__spath_split_joins_seq {1}
  }
  {
    % Last action is not a close, so mark it as needing rejoining
    \seq_put_right:Nn \l__spath_split_joins_seq {0}
  }
  % Remove close paths
  \spath_open_path:n {spath split tmp}
  % Separate into segments (creates a token list)
  \spath_explode_into_list:nn {spath split tmp}{split segments}
  % so convert to a sequence
  \seq_set_split:NnV \l__spath_split_segments_seq {} \l__spath_list_splitsegments

  % Iterate over the number of terms in the sequence, adding the
  % rejoining information
  \int_step_inline:nnnn {1} {1} {\seq_count:N \l__spath_split_segments_seq - 1}
  {
    \seq_put_right:Nn \l__spath_split_joins_seq {1}
  }
  
  % Clear a couple of auxiliaries
  \seq_clear:N \l__spath_split_segments_processed_seq
  \seq_clear:N \l__spath_split_joins_processed_seq
  \int_zero:N \l__spath_split_count_int
  \int_zero:N \l__spath_split_intersection_int

  % Iterate over the sequence
  \bool_while_do:nn
  {
    !\seq_if_empty_p:N \l__spath_split_segments_seq
  }
  {
    % Remove the left-most items for consideration
    \seq_pop_left:NN \l__spath_split_segments_seq \l__spath_split_path_a_tl
    \seq_pop_left:NN \l__spath_split_joins_seq \l__spath_split_join_a_tl

    % Clear some sequences, these will hold any pieces we create from splitting our path under consideration except for the first piece
    \seq_clear:N \l__spath_split_segments_middle_seq
    \seq_clear:N \l__spath_split_joins_middle_seq

    % Put the rejoining information in the processed sequence
    \seq_put_right:NV \l__spath_split_joins_processed_seq \l__spath_split_join_a_tl
    
    % Iterate over the rest of the segments
    \int_step_inline:nnnn {1} {1} {\seq_count:N \l__spath_split_segments_seq}
    {
      % Store the next segment for intersection
      \tl_set:Nx \l__spath_split_path_b_tl {\seq_item:Nn \l__spath_split_segments_seq {##1}}
      % Get the next joining information
      \tl_set:Nx \l__spath_split_join_b_tl {\seq_item:Nn \l__spath_split_joins_seq {##1}}
      % And put it onto our saved stack of joins
      \seq_put_right:NV \l__spath_split_joins_middle_seq \l__spath_split_join_b_tl
      
      % Sort intersections along the first path
      \pgfintersectionsortbyfirstpath
      % Find the intersections of these segments
      \spath_intersect:VV \l__spath_split_path_a_tl \l__spath_split_path_b_tl

      % If we get intersections
      \int_compare:nTF {\pgfintersectionsolutions > 0}
      {
        % Find the times of the first intersection (which will be the first along the segment we're focussing on)
        \pgfintersectiongetsolutiontimes{1}{\l__spath_split_first_tl}{\l__spath_split_second_tl}

        % Ignore intersections that are very near end points
        \bool_if:nT {
          \fp_compare_p:n {
            \l__spath_split_first_tl < .99
          }
          &&
          \fp_compare_p:n {
            \l__spath_split_first_tl > .01
          }
          &&
          \fp_compare_p:n {
            \l__spath_split_second_tl < .99
          }
          &&
          \fp_compare_p:n {
            \l__spath_split_second_tl > .01
          }
        }
        {
          % We have a genuine intersection
          \int_incr:N \l__spath_split_intersection_int
        }

        % Do we split the first path?
        \bool_if:nT {
          \fp_compare_p:n {
            \l__spath_split_first_tl < .99
          }
          &&
          \fp_compare_p:n {
            \l__spath_split_first_tl > .01
          }
        }
        {
          % Split the first path at the intersection
          \spath_split_at:VVnn \l__spath_split_path_a_tl \l__spath_split_first_tl {split \int_use:N \l__spath_split_count_int}{split \int_eval:n { \l__spath_split_count_int + 1}}

          % Put the latter part into our temporary sequence
          \seq_put_left:Nx \l__spath_split_segments_middle_seq {split \int_eval:n{ \l__spath_split_count_int + 1}}
          % Mark this intersection in the joining information
          % Label the breaks as "IA#" and "IB#"
          \seq_put_left:Nx \l__spath_split_joins_middle_seq {IA \int_use:N  \l__spath_split_intersection_int }
          
          % Replace our segment under consideration by the initial part
          \tl_set:Nx \l__spath_split_path_a_tl {split \int_use:N \l__spath_split_count_int }
          % Increment our counter
          \int_incr:N \l__spath_split_count_int
          \int_incr:N \l__spath_split_count_int
        }

        % Do we split the second path?
        \bool_if:nTF {
          \fp_compare_p:n {
            \l__spath_split_second_tl < .99
          }
          &&
          \fp_compare_p:n {
            \l__spath_split_second_tl > .01
          }
        }
        {
          % Split the second segment at the intersection point
          \spath_split_at:VVnn \l__spath_split_path_b_tl \l__spath_split_second_tl {split \int_use:N \l__spath_split_count_int}{split \int_eval:n { \l__spath_split_count_int + 1}}

          % Add these segments to our list of segments we've considered
          \seq_put_right:Nx \l__spath_split_segments_middle_seq {split \int_eval:n{ \l__spath_split_count_int}}
          \seq_put_right:Nx \l__spath_split_segments_middle_seq {split \int_eval:n{ \l__spath_split_count_int + 1}}
          \seq_put_right:Nx \l__spath_split_joins_middle_seq {IB \int_use:N \l__spath_split_intersection_int}
          
          % Increment the counter
          \int_incr:N \l__spath_split_count_int
          \int_incr:N \l__spath_split_count_int
        }
        {
          % If we didn't split the second segment, we just put the second segment on the list of segments we've considered
          \seq_put_right:NV \l__spath_split_segments_middle_seq \l__spath_split_path_b_tl
        }

      }
      {
        % If we didn't split the second segment, we just put the second segment on the list of segments we've considered
        \seq_put_right:NV \l__spath_split_segments_middle_seq \l__spath_split_path_b_tl
      }

    }
    % Having been through the loop for our segment under consideration, we replace the segment list since some of them might have been split and add any remainders of the segment under consideration
    \seq_set_eq:NN \l__spath_split_segments_seq \l__spath_split_segments_middle_seq
    \seq_set_eq:NN \l__spath_split_joins_seq \l__spath_split_joins_middle_seq

    % We add the initial segment to our sequence of dealt with segments
    \seq_put_right:NV \l__spath_split_segments_processed_seq \l__spath_split_path_a_tl
  }

  \seq_clear:N \l__spath_split_segments_seq
  
  \tl_set:Nx \l__spath_split_path_a_tl {\seq_item:Nn \l__spath_split_segments_processed_seq {1}}
  
  \int_step_inline:nnnn {2} {1} {\seq_count:N \l__spath_split_segments_processed_seq}
  {
    % Get the next path and joining information
    \tl_set:Nx \l__spath_split_path_b_tl {\seq_item:Nn \l__spath_split_segments_processed_seq {##1}}
    \tl_set:Nx \l__spath_split_join_b_tl {\seq_item:Nn \l__spath_split_joins_processed_seq {##1}}

    % Do we join this to our previous path?
    \bool_set_false:N \l__spath_split_join_bool

    % If it came from when we split the original path, join them
    \tl_if_eq:NNT \l__spath_split_join_b_tl \l__spath_split_one_tl
    {
      \bool_set_true:N \l__spath_split_join_bool
    }

    % Is this a labelled intersection?
    \tl_set:Nx \l__spath_split_tmpa_tl {\tl_head:N \l__spath_split_join_b_tl}
    \tl_if_eq:NNT \l__spath_split_tmpa_tl \l__spath_split_I_tl
    {
      % Strip off the "I" prefix
      \tl_set:Nx \l__spath_split_tmpa_tl {\tl_tail:N \l__spath_split_join_b_tl}

      % Next letter is "A" or "B"
      \tl_set:Nx \l__spath_split_join_b_tl {\tl_head:N \l__spath_split_tmpa_tl}

      % Remainder is the intersection index
      \int_compare:nTF {\tl_tail:N \l__spath_split_tmpa_tl <= \seq_count:N \l__spath_split_intersections_seq}
      {
        \tl_set:Nx \l__spath_split_join_a_tl {\seq_item:Nn \l__spath_split_intersections_seq {\tl_tail:N \l__spath_split_tmpa_tl}}
      }
      {
        % Default is to rejoin neither segment
        \tl_set:Nn \l__spath_split_join_a_tl {C}
      }

      \tl_if_eq:NNT \l__spath_split_join_a_tl \l__spath_split_join_b_tl
      {
        \bool_set_true:N \l__spath_split_join_bool
      }
      
    }

    \bool_if:NTF \l__spath_split_join_bool
    {
      % Yes, so append it
      \spath_append_no_move:VV \l__spath_split_path_a_tl \l__spath_split_path_b_tl
    }
    {
      % No, so put the first path onto the stack
      \seq_put_right:NV \l__spath_split_segments_seq \l__spath_split_path_a_tl

      % Swap out the paths
      \tl_set_eq:NN \l__spath_split_path_a_tl \l__spath_split_path_b_tl
    }
  }

  % Do we need to add the first path to the last?
  \tl_set:Nx \l__spath_split_join_a_tl {\seq_item:Nn \l__spath_split_joins_processed_seq {1}}

  \tl_if_eq:NNTF \l__spath_split_join_a_tl \l__spath_split_one_tl
  {
    \tl_set:Nx \l__spath_split_path_b_tl {\seq_item:Nn \l__spath_split_segments_processed_seq {1}}
    \spath_prepend_no_move:VV \l__spath_split_path_b_tl \l__spath_split_path_a_tl
    
  }
  {
    \seq_put_right:NV \l__spath_split_segments_seq \l__spath_split_path_a_tl
  }

  % Put our paths into a list
  \int_zero:N \l__spath_split_count_int
  \seq_map_inline:Nn \l__spath_split_segments_seq
  {
    \int_incr:N \l__spath_split_count_int
    \spath_gclone:nn {##1} {#2~\int_use:N \l__spath_split_count_int}
  }
  \tl_gset:NV \spathselfintersectioncount \l__spath_split_count_int
  \group_end:
}

\ExplSyntaxOff

\begin{document}

\begin{tikzpicture}[use Hobby shortcut]

\shade[left color=cyan, right color=magenta, shading angle=90] (-.5,-.2) rectangle (7.5,2.2);
\fill[pattern=bricks, pattern color=white] (-.5,-.2) rectangle (7.5,2.2);

\path
[
split at self intersections={coil}{AAAAAAAAAAAAAAAA}
] ([out angle=0]0,0)
.. +(.85,1) .. +(.25,2) .. +(-.35,1) .. ++(.5,0)
.. +(.85,1) .. +(.25,2) .. +(-.35,1) .. ++(.5,0)
.. +(.85,1) .. +(.25,2) .. +(-.35,1) .. ++([in angle=180].5,0)
;

\foreach \k in {1,..., \spathselfintersectioncount} {
  \tikzset{shorten spath both ends={coil \k}{2pt}, globalise spath=coil \k}
}

\foreach \k in {1,..., 4} {
  \draw[set spath=coil \k];
}

\foreach[evaluate=\l as \xshift using \l*.5cm] \l in {0,...,10} {
  \foreach \k in {5,..., 9} {
    \draw[translate spath={coil \k}{\xshift pt}{0pt},set spath=coil \k];
  }
}

\draw[translate spath={coil 10}{5cm}{0pt},set spath=coil 10];

\end{tikzpicture}
\end{document}

Oczywiście zdecydowana większość z nich ostatecznie trafi do spath3pakietu, a kluczowa część jest tikzpicturena końcu. To, co to robi, to obrać podstawową ścieżkę i rozdzielić ją tam, gdzie się przecina. Następnie skraca te elementy, aby utworzyć luki. Kawałki te można następnie ponownie wykorzystać (z tłumaczeniem) do utworzenia cewki. Rezultatem jest następujący obraz z tłem pokazującym, że nie ma tu żadnych doublesztuczek.