สถิติ - สูตร

ต่อไปนี้เป็นรายการสูตรสถิติที่ใช้ในบทเรียนสถิติ Tutorialspoint แต่ละสูตรจะเชื่อมโยงไปยังหน้าเว็บที่อธิบายวิธีการใช้สูตร

  • Adjusted R-Squared - $ {R_ {adj} ^ 2 = 1 - [\ frac {(1-R ^ 2) (n-1)} {nk-1}]} $

  • Arithmetic Mean - $ \ bar {x} = \ frac {_ {\ sum {x}}} {N} $

  • Arithmetic Median - ค่ามัธยฐาน = มูลค่า $ \ frac {N + 1} {2}) ^ {th} \ item $

  • Arithmetic Range - $ {Coefficient \ of \ Range = \ frac {LS} {L + S}} $

  • Best Point Estimation - $ {MLE = \ frac {S} {T}} $

  • Binomial Distribution - $ {P (Xx)} = ^ {n} {C_x} {Q ^ {nx}} {p ^ x} $

  • Chebyshev's Theorem - $ {1- \ frac {1} {k ^ 2}} $

  • Circular Permutation - $ {P_n = (n-1)!} $

  • Cohen's kappa coefficient - $ {k = \ frac {p_0 - p_e} {1-p_e} = 1 - \ frac {1-p_o} {1-p_e}} $

  • Combination - $ {C (n, r) = \ frac {n!} {r! (nr)!}} $

  • Combination with replacement - $ {^ nC_r = \ frac {(n + r-1)!} {r! (n-1)!}} $

  • Continuous Uniform Distribution - f (x) = $ \ begin {cases} 1 / (ba), & \ text {เมื่อ $ a \ le x \ le b $} \\ 0, & \ text {เมื่อ $ x \ lt a $ หรือ $ x \ gt b $} \ end {cases} $

  • Coefficient of Variation - $ {CV = \ frac {\ sigma} {X} \ times 100} $

  • Correlation Co-efficient - $ {r = \ frac {N \ sum xy - (\ sum x) (\ sum y)} {\ sqrt {[N \ sum x ^ 2 - (\ sum x) ^ 2] [N \ sum y ^ 2 - (\ sum y) ^ 2]}}} $

  • Cumulative Poisson Distribution - $ {F (x, \ lambda) = \ sum_ {k = 0} ^ x \ frac {e ^ {- \ lambda} \ lambda ^ x} {k!}} $

  • Deciles Statistics- $ {D_i = l + \ frac {h} {f} (\ frac {iN} {10} - ค); ผม = 1,2,3 ... , 9} $

  • Deciles Statistics- $ {D_i = l + \ frac {h} {f} (\ frac {iN} {10} - ค); ผม = 1,2,3 ... , 9} $

  • Factorial- $ {n! = 1 \ times 2 \ times 3 ... \ times n} $

  • Geometric Mean - $ GM = \ sqrt [n] {x_1x_2x_3 ... x_n} $

  • Geometric Probability Distribution - $ {P (X = x) = p \ times q ^ {x-1}} $

  • Grand Mean - $ {X_ {GM} = \ frac {\ sum x} {N}} $

  • Harmonic Mean - $ HM = \ frac {W} {\ sum (\ frac {W} {X})} $

  • Harmonic Mean - $ HM = \ frac {W} {\ sum (\ frac {W} {X})} $

  • Hypergeometric Distribution - $ {h (x; N, n, K) = \ frac {[C (k, x)] [C (Nk, nx)]} {C (N, n)}} $

ผม

  • Interval Estimation - $ {\ mu = \ bar x \ pm Z _ {\ frac {\ alpha} {2}} \ frac {\ sigma} {\ sqrt n}} $

  • Logistic Regression - $ {\ pi (x) = \ frac {e ^ {\ alpha + \ beta x}} {1 + e ^ {\ alpha + \ beta x}}} $

  • Mean Deviation - $ {MD} = \ frac {1} {N} \ sum {| XA |} = \ frac {\ sum {| D |}} {N} $

  • Mean Difference - $ {Mean \ Difference = \ frac {\ sum x_1} {n} - \ frac {\ sum x_2} {n}} $

  • Multinomial Distribution - $ {P_r = \ frac {n!} {(n_1!) (n_2!) ... (n_x!)} {P_1} ^ {n_1} {P_2} ^ {n_2} ... {P_x} ^ { n_x}} $

  • Negative Binomial Distribution - $ {f (x) = P (X = x) = (x-1r-1) (1-p) x-rpr} $

  • Normal Distribution - $ {y = \ frac {1} {\ sqrt {2 \ pi}} e ^ {\ frac {- (x - \ mu) ^ 2} {2 \ sigma}}} $

โอ

  • One Proportion Z Test - $ {z = \ frac {\ hat p -p_o} {\ sqrt {\ frac {p_o (1-p_o)} {n}}}} $

  • Permutation - $ {{^ nP_r = \ frac {n!} {(nr)!}} $

  • Permutation with Replacement - $ {^ nP_r = n ^ r} $

  • Poisson Distribution - $ {P (Xx)} = {e ^ {- m}}. \ frac {m ^ x} {x!} $

  • probability - $ {P (A) = \ frac {Number \ of \ favorable \ cases} {Total \ number \ of \ เท่าเทียม \ แนวโน้ม \ cases} = \ frac {m} {n}} $

  • Probability Additive Theorem - $ {P (A \ หรือ \ B) = P (A) + P (B) \\ [7pt] P (A \ cup B) = P (A) + P (B)} $

  • Probability Multiplicative Theorem - $ {P (A \ and \ B) = P (A) \ times P (B) \\ [7pt] P (AB) = P (A) \ times P (B)} $

  • Probability Bayes Theorem - $ {P (A_i / B) = \ frac {P (A_i) \ times P (B / A_i)} {\ sum_ {i = 1} ^ k P (A_i) \ times P (B / A_i)}} $

  • Probability Density Function - $ {P (a \ le X \ le b) = \ int_a ^ bf (x) d_x} $

  • Reliability Coefficient - $ {Reliability \ Coefficient, \ RC = (\ frac {N} {(N-1)}) \ times (\ frac {(Total \ Variance \ - Sum \ of \ Variance)} {Total Variance})} $

  • Residual Sum of Squares - $ {RSS = \ sum_ {i = 0} ^ n (\ epsilon_i) ^ 2 = \ sum_ {i = 0} ^ n (y_i - (\ alpha + \ beta x_i)) ^ 2} $

  • Shannon Wiener Diversity Index - $ {H = \ sum [(p_i) \ times ln (p_i)]} $

  • Standard Deviation - $ \ sigma = \ sqrt {\ frac {\ sum_ {i = 1} ^ n {(x- \ bar x) ^ 2}} {N-1}} $

  • Standard Error ( SE ) - $ SE_ \ bar {x} = \ frac {s} {\ sqrt {n}} $

  • Sum of Square - $ {Sum \ of \ Squares \ = \ sum (x_i - \ bar x) ^ 2} $

ที

  • Trimmed Mean - $ \ mu = \ frac {\ sum {X_i}} {n} $