Ciąg pędnika jonowego, gdy statek kosmiczny jest naładowany
Czytałem w wielu artykułach i książkach, że ciąg pędu jonowego jest równy
$$T = \sqrt{\frac{2M}{e}} I_b \sqrt{V_b} \ \ \text{[newtons]}$$
zrzut ekranu
gdzie $V_b$ jest potencjałem przyspieszenia, ale to równanie jest ważne, gdy potencjał statku kosmicznego wynosi 0.
Co się dzieje, gdy powierzchnia satelity jest naładowana? (Cząstki znajdujące się w kosmosie z powodu wiatru słonecznego naładują powierzchnię satelity).
W tym przypadku pełne równanie wyglądałoby mniej więcej tak:$V_b = V_a + V_s$ gdzie $V_a$ jest potencjałem przyspieszenia i $V_s$ czy napięcie powierzchni jest naładowane?
Odpowiedzi
To świetne pytanie!
Opłata za pierwsze zamówienie nie ma znaczenia. Liczy się prędkość wyjścia jonów, określona przez różnicę potencjału przyspieszenia$V_b$.
W prostej sytuacji ciąg to prędkość jonów względem statku kosmicznego pomnożona przez masowe natężenie przepływu$dm/dt$jonów, a prędkość ta jest określana przez (coś w rodzaju) różnicę potencjału przyspieszenia między plazmą lub pierwszą siatką a końcową siatką przyspieszenia.
W prostej sytuacji nie jest to związane z potencjałem statku kosmicznego w stosunku do innych rzeczy, więc ładunek statku kosmicznego nie wpłynie na prędkość wychodzących jonów, a tym samym ich pęd.
Jednak nic nie jest proste i tak, może wystąpić niewielka interakcja kulombowska między rzadką pióropuszem jonów za statkiem kosmicznym a resztkowym ładunkiem statku kosmicznego, ale zwykle nie stanowi to problemu, ponieważ elektrony usunięte z jonów są również wyrzucane z tyłu za pomocą działo elektronowe, które jest zwykle skierowane w kierunku strumienia. Jeśli prędkości są podobne, to z daleka będzie wyglądać mniej więcej neutralnie i efekt ten zostanie zminimalizowany.
Więcej na ten temat znajdziesz w
- Czy jest jakiś możliwy powód, aby skierować działo elektronowe konkretnie na ślad jonowy za pędnikiem jonowym? może wymagać dodatkowej odpowiedzi
- Neutralizacja jonów w pędniku jonowym i połączeniach z nim
W Twoim równaniu kropka m lub $dm/dt$jest wyrażony jako aktualny czas masy i kilka innych rzeczy. Powodem, dla którego wygląda jak pierwiastek kwadratowy z masy, jest to, że na końcu człon prędkości$\sqrt{V_b}$ powinien mieć M na dole, co uwolniłoby pierwsze M z pierwiastka kwadratowego i obok $I$ Gdzie należy.
Więcej na ten temat:
- Gdzie mogę się nauczyć obliczać fizykę pędnika jonowego?
- Problem z obliczaniem ciągu pędnika jonowego