Fabuła: Jak utworzyć opcję rozwijania wielu indeksów?

Nov 19 2020

Mam dane o tym samym numerze indeksu dla różnych przedziałów czasowych, jak poniżej

           Time CallOI  PutOI   CallLTP PutLTP  
29500   3:30 PM 502725  554775  343.70  85.50   
29500   3:15 PM 568725  629700  357.15  81.70   
29500   2:59 PM 719350  689850  337.85  95.45   
29500   2:45 PM 786975  641575  360.00  108.35  
29500   2:30 PM 823500  626875  336.50  127.80  
29500   2:15 PM 812450  631800  308.55  143.00  
29500   2:00 PM 974700  617750  389.80  120.00  
29500   1:45 PM 1072675 547100  262.55  186.85  
29500   1:30 PM 1272300 469600  206.85  232.00  
29600   3:30 PM 502725  554775  343.70  85.50   
29600   3:15 PM 568725  629700  357.15  81.70   
29600   2:59 PM 719350  689850  337.85  95.45   
29600   2:45 PM 786975  641575  360.00  108.35  
29600   2:30 PM 823500  626875  336.50  127.80  
29600   2:15 PM 812450  631800  308.55  143.00  
29600   2:00 PM 974700  617750  389.80  120.00  
29600   1:45 PM 1072675 547100  262.55  186.85  
29600   1:30 PM 1272300 469600  206.85  232.00  
29700   3:30 PM 502725  554775  343.70  85.50   
29700   3:15 PM 568725  629700  357.15  81.70   
29700   2:59 PM 719350  689850  337.85  95.45   
29700   2:45 PM 786975  641575  360.00  108.35  
29700   2:30 PM 823500  626875  336.50  127.80  
29700   2:15 PM 812450  631800  308.55  143.00  
29700   2:00 PM 974700  617750  389.80  120.00  
29700   1:45 PM 1072675 547100  262.55  186.85  
29700   1:30 PM 1272300 469600  206.85  232.00  

korzystając z poniższego kodu zrobiłem wykres:

subfig = make_subplots(specs=[[{"secondary_y": True}]])

# create two independent figures with px.line each containing data from multiple columns
fig = px.line(df,x='Time', y='Call OI')
fig2 = px.line(df,x='Time', y='Call LTP')

fig2.update_traces(yaxis="y2")

subfig.add_traces(fig.data + fig2.data)
subfig.layout.xaxis.title="Time"
subfig.layout.yaxis.title="OI"
subfig.layout.yaxis2.type="log"
subfig.layout.yaxis2.title="Price"
# recoloring is necessary otherwise lines from fig und fig2 would share each color
# e.g. Linear-, Log- = blue; Linear+, Log+ = red... we don't want this
subfig.for_each_trace(lambda t: t.update(line=dict(color=t.marker.color)))
subfig.show()

Chcę menu rozwijane, które wybiera inny indeks, a dane wykresu odpowiednio się zmieniają. na przykład jeśli wybiorę z listy rozwijanej 29600, pokaże tylko dane dla tego numeru indeksu, a także istnieje sposób na odwrócenie osi x (czas) od lewej do prawej. Z góry dziękuję za wszelkie rozwiązania

Odpowiedzi

1 vestland Nov 22 2020 at 01:16

Edycja 2 - zaktualizowana sugestia z połączonym zbiorem danych

Aby skorzystać z pełnego zestawu danych podanego w linku , po prostu pobierz tę zawartość jako plik csv, otwórz go i skopiuj zawartość, a następnie uruchom poniższy kod, aby uzyskać następny rysunek. Dane są zbierane za pomocą dfi = pd.read_clipboard(sep=','). Naprawdę nie ma potrzeby zawracać sobie głowy ustawieniem 'Strike Pricejako indeks. Należy pamiętać, że zbiór danych zawiera wiele 0wartości, ale wybranie na przykład 26100da przynajmniej znaczące wyniki:

Kompletny kod do edycji 2

import collections
import dash
import pandas as pd

from dash.dependencies import Output, Input
from dash.exceptions import PreventUpdate

from jupyter_dash import JupyterDash
import dash_core_components as dcc
import dash_html_components as html
from dash.dependencies import Input, Output, State, ClientsideFunction
import dash_bootstrap_components as dbc
import dash_core_components as dcc
import dash_html_components as html
from plotly.subplots import make_subplots
import plotly.graph_objects as go

dfi = pd.read_clipboard(sep=',')
df = dfi.copy()

idx = list(df['Strike Price'].unique())

app = JupyterDash()

app.layout = html.Div([
    dcc.Store(id='memory-output'),
    dcc.Dropdown(id='memory-countries', options=[
        {'value': x, 'label': x} for x in idx
    ], multi=False, value=idx[0]), 
        dcc.Dropdown(id='memory-field', options=[
        {'value': 'default', 'label': 'default'},
        {'value': 'reverse', 'label': 'reverse'},
    ], value='default'),
    
    html.Div([
        dcc.Graph(id='memory-graph'),
    ])
])


@app.callback(Output('memory-output', 'data'),
              [Input('memory-countries', 'value')])
def filter_countries(idx_selected):
    if not idx_selected:
        # Return all the rows on initial load/no country selected.
        return(idx_selected)
    return(idx_selected)

@app.callback(Output('memory-graph', 'figure'),
              [Input('memory-output', 'data'),
              Input('memory-field', 'value')])
def on_data_set_graph(data, field):
#     print(data)
#     global dff
    if data is None:
        raise PreventUpdate
    
    # figure setup
    fig = make_subplots(specs=[[{"secondary_y": True}]])

    dff = df[df['Strike Price']==data]
    fig.add_trace(go.Scatter(x=dff.Time, y = dff['Call OI'], name = 'Call'), secondary_y=True)
    fig.add_trace(go.Scatter(x=dff.Time, y = dff['Call LTP'], name = 'Put'), secondary_y=False)
    
    # flip axis
    if field != 'default':
        fig.update_layout(xaxis = dict(autorange='reversed'))
    
    return(fig)

app.run_server(mode='inline', port = 8072, dev_tools_ui=True,
          dev_tools_hot_reload =True, threaded=True, debug=True)

Edycja - zaktualizowano sugestię z odwracaniem osi

Moja najnowsza propozycja opiera się na przykład w ramach sekcji Share data between callbacksod dcc.Store i dokona niezbędnych dostosowań do pracy dla przypadku użycia. Dodałem również funkcję odwracania wartości osi X za pomocą:fig.update_layout(xaxis = dict(autorange='reversed'))

Oto wynik:

A oto pełny kod:

import collections
import dash
import pandas as pd

from dash.dependencies import Output, Input
from dash.exceptions import PreventUpdate

from jupyter_dash import JupyterDash
import dash_core_components as dcc
import dash_html_components as html
from dash.dependencies import Input, Output, State, ClientsideFunction
import dash_bootstrap_components as dbc
import dash_core_components as dcc
import dash_html_components as html
from plotly.subplots import make_subplots
import plotly.graph_objects as go

df = pd.DataFrame({'Time': {(29500, '3:30'): 'PM',
                              (29500, '3:15'): 'PM',
                              (29500, '2:59'): 'PM',
                              (29500, '2:45'): 'PM',
                              (29500, '2:30'): 'PM',
                              (29500, '2:15'): 'PM',
                              (29500, '2:00'): 'PM',
                              (29500, '1:45'): 'PM',
                              (29500, '1:30'): 'PM',
                              (29600, '3:30'): 'PM',
                              (29600, '3:15'): 'PM',
                              (29600, '2:59'): 'PM',
                              (29600, '2:45'): 'PM',
                              (29600, '2:30'): 'PM',
                              (29600, '2:15'): 'PM',
                              (29600, '2:00'): 'PM',
                              (29600, '1:45'): 'PM',
                              (29600, '1:30'): 'PM',
                              (29700, '3:30'): 'PM',
                              (29700, '3:15'): 'PM',
                              (29700, '2:59'): 'PM',
                              (29700, '2:45'): 'PM',
                              (29700, '2:30'): 'PM',
                              (29700, '2:15'): 'PM',
                              (29700, '2:00'): 'PM',
                              (29700, '1:45'): 'PM',
                              (29700, '1:30'): 'PM'},
                             'CallOI': {(29500, '3:30'): 502725,
                              (29500, '3:15'): 568725,
                              (29500, '2:59'): 719350,
                              (29500, '2:45'): 786975,
                              (29500, '2:30'): 823500,
                              (29500, '2:15'): 812450,
                              (29500, '2:00'): 974700,
                              (29500, '1:45'): 1072675,
                              (29500, '1:30'): 1272300,
                              (29600, '3:30'): 502725,
                              (29600, '3:15'): 568725,
                              (29600, '2:59'): 719350,
                              (29600, '2:45'): 786975,
                              (29600, '2:30'): 823500,
                              (29600, '2:15'): 812450,
                              (29600, '2:00'): 974700,
                              (29600, '1:45'): 1000000,
                              (29600, '1:30'): 1272300,
                              (29700, '3:30'): 502725,
                              (29700, '3:15'): 568725,
                              (29700, '2:59'): 719350,
                              (29700, '2:45'): 786975,
                              (29700, '2:30'): 823500,
                              (29700, '2:15'): 812450,
                              (29700, '2:00'): 974700,
                              (29700, '1:45'): 1172675,
                              (29700, '1:30'): 1272300},
                             'PutOI': {(29500, '3:30'): 554775,
                              (29500, '3:15'): 629700,
                              (29500, '2:59'): 689850,
                              (29500, '2:45'): 641575,
                              (29500, '2:30'): 626875,
                              (29500, '2:15'): 631800,
                              (29500, '2:00'): 617750,
                              (29500, '1:45'): 547100,
                              (29500, '1:30'): 469600,
                              (29600, '3:30'): 554775,
                              (29600, '3:15'): 629700,
                              (29600, '2:59'): 689850,
                              (29600, '2:45'): 641575,
                              (29600, '2:30'): 626875,
                              (29600, '2:15'): 631800,
                              (29600, '2:00'): 617750,
                              (29600, '1:45'): 547100,
                              (29600, '1:30'): 469600,
                              (29700, '3:30'): 554775,
                              (29700, '3:15'): 629700,
                              (29700, '2:59'): 689850,
                              (29700, '2:45'): 641575,
                              (29700, '2:30'): 626875,
                              (29700, '2:15'): 631800,
                              (29700, '2:00'): 617750,
                              (29700, '1:45'): 547100,
                              (29700, '1:30'): 469600},
                             'CallLTP': {(29500, '3:30'): 343.7,
                              (29500, '3:15'): 357.15,
                              (29500, '2:59'): 337.85,
                              (29500, '2:45'): 360.0,
                              (29500, '2:30'): 336.5,
                              (29500, '2:15'): 308.55,
                              (29500, '2:00'): 389.8,
                              (29500, '1:45'): 262.55,
                              (29500, '1:30'): 206.85,
                              (29600, '3:30'): 343.7,
                              (29600, '3:15'): 357.15,
                              (29600, '2:59'): 337.85,
                              (29600, '2:45'): 360.0,
                              (29600, '2:30'): 336.5,
                              (29600, '2:15'): 308.55,
                              (29600, '2:00'): 389.8,
                              (29600, '1:45'): 262.55,
                              (29600, '1:30'): 206.85,
                              (29700, '3:30'): 343.7,
                              (29700, '3:15'): 357.15,
                              (29700, '2:59'): 337.85,
                              (29700, '2:45'): 360.0,
                              (29700, '2:30'): 336.5,
                              (29700, '2:15'): 308.55,
                              (29700, '2:00'): 389.8,
                              (29700, '1:45'): 262.55,
                              (29700, '1:30'): 206.85},
                             'PutLTP': {(29500, '3:30'): 85.5,
                              (29500, '3:15'): 81.7,
                              (29500, '2:59'): 95.45,
                              (29500, '2:45'): 108.35,
                              (29500, '2:30'): 127.8,
                              (29500, '2:15'): 143.0,
                              (29500, '2:00'): 120.0,
                              (29500, '1:45'): 186.85,
                              (29500, '1:30'): 232.0,
                              (29600, '3:30'): 85.5,
                              (29600, '3:15'): 81.7,
                              (29600, '2:59'): 95.45,
                              (29600, '2:45'): 108.35,
                              (29600, '2:30'): 127.8,
                              (29600, '2:15'): 143.0,
                              (29600, '2:00'): 120.0,
                              (29600, '1:45'): 186.85,
                              (29600, '1:30'): 232.0,
                              (29700, '3:30'): 85.5,
                              (29700, '3:15'): 81.7,
                              (29700, '2:59'): 95.45,
                              (29700, '2:45'): 108.35,
                              (29700, '2:30'): 127.8,
                              (29700, '2:15'): 143.0,
                              (29700, '2:00'): 120.0,
                              (29700, '1:45'): 186.85,
                              (29700, '1:30'): 232.0}})

df = df.reset_index()
idx = list(df['level_0'].unique())

app = JupyterDash()

app.layout = html.Div([
    dcc.Store(id='memory-output'),
    dcc.Dropdown(id='memory-countries', options=[
        {'value': x, 'label': x} for x in idx
    ], multi=False, value=idx[0]), 
        dcc.Dropdown(id='memory-field', options=[
        {'value': 'default', 'label': 'default'},
        {'value': 'reverse', 'label': 'reverse'},
    ], value='default'),
    
    html.Div([
        dcc.Graph(id='memory-graph'),
    ])
])


@app.callback(Output('memory-output', 'data'),
              [Input('memory-countries', 'value')])
def filter_countries(idx_selected):
    if not idx_selected:
        # Return all the rows on initial load/no country selected.
        return(idx_selected)
    return(idx_selected)

@app.callback(Output('memory-graph', 'figure'),
              [Input('memory-output', 'data'),
              Input('memory-field', 'value')])
def on_data_set_graph(data, field):
#     print(data)
    if data is None:
        raise PreventUpdate
    
    # figure setup
    fig = make_subplots(specs=[[{"secondary_y": True}]])

    dff = df[df['level_0']==data]
    fig.add_trace(go.Scatter(x=dff.level_1, y = dff.CallOI, name = 'Call'), secondary_y=True)
    fig.add_trace(go.Scatter(x=dff.level_1, y = dff.PutOI, name = 'Put'), secondary_y=False)
    
    # flip axis
    if field != 'default':
        fig.update_layout(xaxis = dict(autorange='reversed'))
    
    return(fig)

app.run_server(mode='inline', port = 8072, dev_tools_ui=True,
          dev_tools_hot_reload =True, threaded=True, debug=True)

Sugestia 1


Nie określiłeś, w jaki sposób używasz swoich danych. Ale zakładając, że jest w JupyterLab, poleciłbym użycie JupyterDash. Uważam, że jest to o wiele łatwiejsze niż włączenie funkcji rozwijanych bezpośrednio na rysunku, na co wskazali początkujący w linku w komentarzach.

Poniższy fragment kodu umożliwia wybranie indeksu, z którego mają być wyświetlane dane w poniższej aplikacji, która jest ustawiona do tworzenia liczby, 'inline'co oznacza w samym notatniku. Jeśli jesteś zainteresowany zastosowaniem takiego podejścia, mogę zobaczyć, czy mogę zaimplementować przycisk do odwrócenia osi X.

Aplikacja:

Kompletny kod

import numpy as np
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from jupyter_dash import JupyterDash
import dash_core_components as dcc
import dash_html_components as html
from dash.dependencies import Input, Output
from plotly.subplots import make_subplots
from dash.dependencies import Input, Output, State

# data
df = pd.DataFrame({'Time': {(29500, '3:30'): 'PM',
                              (29500, '3:15'): 'PM',
                              (29500, '2:59'): 'PM',
                              (29500, '2:45'): 'PM',
                              (29500, '2:30'): 'PM',
                              (29500, '2:15'): 'PM',
                              (29500, '2:00'): 'PM',
                              (29500, '1:45'): 'PM',
                              (29500, '1:30'): 'PM',
                              (29600, '3:30'): 'PM',
                              (29600, '3:15'): 'PM',
                              (29600, '2:59'): 'PM',
                              (29600, '2:45'): 'PM',
                              (29600, '2:30'): 'PM',
                              (29600, '2:15'): 'PM',
                              (29600, '2:00'): 'PM',
                              (29600, '1:45'): 'PM',
                              (29600, '1:30'): 'PM',
                              (29700, '3:30'): 'PM',
                              (29700, '3:15'): 'PM',
                              (29700, '2:59'): 'PM',
                              (29700, '2:45'): 'PM',
                              (29700, '2:30'): 'PM',
                              (29700, '2:15'): 'PM',
                              (29700, '2:00'): 'PM',
                              (29700, '1:45'): 'PM',
                              (29700, '1:30'): 'PM'},
                             'CallOI': {(29500, '3:30'): 502725,
                              (29500, '3:15'): 568725,
                              (29500, '2:59'): 719350,
                              (29500, '2:45'): 786975,
                              (29500, '2:30'): 823500,
                              (29500, '2:15'): 812450,
                              (29500, '2:00'): 974700,
                              (29500, '1:45'): 1072675,
                              (29500, '1:30'): 1272300,
                              (29600, '3:30'): 502725,
                              (29600, '3:15'): 568725,
                              (29600, '2:59'): 719350,
                              (29600, '2:45'): 786975,
                              (29600, '2:30'): 823500,
                              (29600, '2:15'): 812450,
                              (29600, '2:00'): 974700,
                              (29600, '1:45'): 1000000,
                              (29600, '1:30'): 1272300,
                              (29700, '3:30'): 502725,
                              (29700, '3:15'): 568725,
                              (29700, '2:59'): 719350,
                              (29700, '2:45'): 786975,
                              (29700, '2:30'): 823500,
                              (29700, '2:15'): 812450,
                              (29700, '2:00'): 974700,
                              (29700, '1:45'): 1172675,
                              (29700, '1:30'): 1272300},
                             'PutOI': {(29500, '3:30'): 554775,
                              (29500, '3:15'): 629700,
                              (29500, '2:59'): 689850,
                              (29500, '2:45'): 641575,
                              (29500, '2:30'): 626875,
                              (29500, '2:15'): 631800,
                              (29500, '2:00'): 617750,
                              (29500, '1:45'): 547100,
                              (29500, '1:30'): 469600,
                              (29600, '3:30'): 554775,
                              (29600, '3:15'): 629700,
                              (29600, '2:59'): 689850,
                              (29600, '2:45'): 641575,
                              (29600, '2:30'): 626875,
                              (29600, '2:15'): 631800,
                              (29600, '2:00'): 617750,
                              (29600, '1:45'): 547100,
                              (29600, '1:30'): 469600,
                              (29700, '3:30'): 554775,
                              (29700, '3:15'): 629700,
                              (29700, '2:59'): 689850,
                              (29700, '2:45'): 641575,
                              (29700, '2:30'): 626875,
                              (29700, '2:15'): 631800,
                              (29700, '2:00'): 617750,
                              (29700, '1:45'): 547100,
                              (29700, '1:30'): 469600},
                             'CallLTP': {(29500, '3:30'): 343.7,
                              (29500, '3:15'): 357.15,
                              (29500, '2:59'): 337.85,
                              (29500, '2:45'): 360.0,
                              (29500, '2:30'): 336.5,
                              (29500, '2:15'): 308.55,
                              (29500, '2:00'): 389.8,
                              (29500, '1:45'): 262.55,
                              (29500, '1:30'): 206.85,
                              (29600, '3:30'): 343.7,
                              (29600, '3:15'): 357.15,
                              (29600, '2:59'): 337.85,
                              (29600, '2:45'): 360.0,
                              (29600, '2:30'): 336.5,
                              (29600, '2:15'): 308.55,
                              (29600, '2:00'): 389.8,
                              (29600, '1:45'): 262.55,
                              (29600, '1:30'): 206.85,
                              (29700, '3:30'): 343.7,
                              (29700, '3:15'): 357.15,
                              (29700, '2:59'): 337.85,
                              (29700, '2:45'): 360.0,
                              (29700, '2:30'): 336.5,
                              (29700, '2:15'): 308.55,
                              (29700, '2:00'): 389.8,
                              (29700, '1:45'): 262.55,
                              (29700, '1:30'): 206.85},
                             'PutLTP': {(29500, '3:30'): 85.5,
                              (29500, '3:15'): 81.7,
                              (29500, '2:59'): 95.45,
                              (29500, '2:45'): 108.35,
                              (29500, '2:30'): 127.8,
                              (29500, '2:15'): 143.0,
                              (29500, '2:00'): 120.0,
                              (29500, '1:45'): 186.85,
                              (29500, '1:30'): 232.0,
                              (29600, '3:30'): 85.5,
                              (29600, '3:15'): 81.7,
                              (29600, '2:59'): 95.45,
                              (29600, '2:45'): 108.35,
                              (29600, '2:30'): 127.8,
                              (29600, '2:15'): 143.0,
                              (29600, '2:00'): 120.0,
                              (29600, '1:45'): 186.85,
                              (29600, '1:30'): 232.0,
                              (29700, '3:30'): 85.5,
                              (29700, '3:15'): 81.7,
                              (29700, '2:59'): 95.45,
                              (29700, '2:45'): 108.35,
                              (29700, '2:30'): 127.8,
                              (29700, '2:15'): 143.0,
                              (29700, '2:00'): 120.0,
                              (29700, '1:45'): 186.85,
                              (29700, '1:30'): 232.0}})

df = df.reset_index()

external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css']
app = JupyterDash(__name__, external_stylesheets=external_stylesheets)

# options for dropdown
criteria = list(df['level_0'].unique())
options = [{'label': i, 'value': i} for i in criteria]
options.append

# app layout
app.layout = html.Div([
                    html.Div([
                        html.Div([
                                  dcc.Dropdown(id='linedropdown',
                                               options=options,                    
                                               value=options[0]['value'],),
                                 ],
                                ),
                                ],className='row'),

                    html.Div([
                        html.Div([
                                  dcc.Graph(id='linechart'),
                                 ],
                                ),
                             ],
                            ),
])

@app.callback(
    [Output('linechart', 'figure')],
    [Input('linedropdown', 'value')]
)

def update_graph(linedropdown):

    # selection using linedropdown
    dff = df[df['level_0']==linedropdown]

    # Create figure with secondary y-axis
    fig = make_subplots(specs=[[{"secondary_y": True}]])

    # Add trace 1
    fig.add_trace(
        go.Scatter(x=dff['level_1'], y=dff['CallOI'], name="Call OI"),
        secondary_y=True,
    )

    # Add trace 2
    fig.add_trace(
        go.Scatter(x=dff['level_1'], y=dff['CallLTP'], name="Call LTP"),
        secondary_y=False,
    )
    fig.update_layout(title = 'Index: ' + str(linedropdown))
    
    return ([fig])

# Run app and display result inline in the notebook
app.run_server(mode='inline', port = 8040, dev_tools_ui=True, debug=True,
              dev_tools_hot_reload =True, threaded=True)