Intuicyjnie, jakie jest ogólne nakładanie się / różnica między transformacjami konformalnymi a ortogonalnymi, czy ogólnie terminami?

Aug 15 2020

Miałem trudności ze znalezieniem jasnej definicji różnic między nimi pod względem praktycznym / geometrycznym. Transformacje ortogonalne to takie, w których powierzchnie współrzędnych lub trajektorie spotykają się pod kątem prostym, a transformacje konformalne to te, które zachowują kąty.

Widzę, jak te pojęcia nakładają się na siebie i mam niejasną intuicję na temat ich różnic, ale mam problem z wyjaśnieniem ich dokładnego rozróżnienia, szczególnie w kontekście rachunku różniczkowego / wektorowego w odniesieniu do pojęć takich jak jakobian i jego właściwości chroniące obszar , równania różniczkowe dla trajektorii ortogonalnych, przekształcenia całkowe itp.

Lub, mówiąc bardziej bezpośrednio, kiedy jest coś ortogonalnego, ale nie konformalnego, i odwrotnie, a kiedy oba są?

Odpowiedzi

2 TedShifrin Aug 15 2020 at 22:06

Konformalna mapa liniowa to kompozycja homothety (odcinek) i ortogonalna mapa liniowa.

2 Vercassivelaunos Aug 15 2020 at 22:19

Najważniejsza część intuicji jest taka: Specjalne przekształcenia ortogonalne to obroty. Przekształcenia ortogonalne to obroty plus odbicia. Przekształcenia konformalne to obroty z dylatacjami. Transformacje konformalne i antykonformalne to obroty plus dylatacje plus odbicia.

Mówiąc matematycznie, oznacza to: Przekształcenia ortogonalne zachowują iloczyn skalarny. Specjalne przekształcenia ortogonalne również zachowują orientację (wyznacznik dodatni). Przekształcenia konformalne i antykonformalne zachowują kąty. Przekształcenia konformalne zachowują także orientację (determinanta pozytywna). Dokładniej, przekształcenia ortogonalne$T$ usatysfakcjonować

$$\langle Tv,Tw\rangle=\langle v,w\rangle,$$

podczas gdy specjalne przekształcenia ortogonalne dodatkowo satysfakcjonują

$$\det T>0.$$

Można nawet wykazać, że przekształcenia ortogonalne już satysfakcjonują $\det T=\pm1$, tworzenie $\det T=1$do specjalnych przekształceń ortogonalnych. Przekształcenia konformalne i antykonformalne$S$ usatysfakcjonować

$$\frac{\langle Sv,Sw\rangle}{\Vert Sv\Vert\Vert Sw\Vert}=\frac{\langle v,w\rangle}{\Vert v\Vert\Vert w\Vert},$$

(dla $v,w\neq0$), podczas gdy mapy konformalne dodatkowo spełniają $\det S>0$. Można wykazać, że to sprawia, że ​​(anty) konformalne przekształcenia są równe odwzorowaniom ortogonalnym pomnożonym przez stałą różną od zera. Transformacje (anty) konformalne są zatem przekształceniami ortogonalnymi z dodatkowym rozszerzeniem. Jeśli nazwiemy różne grupy zawierające te przemiany$\operatorname{O},\operatorname{SO}$ (ortogonalne i specjalne ortogonalne), $\operatorname{CO}$ (konformalny plus antykonformalny) i $\operatorname{CSO}$ (tylko konformalne), to mamy następujące relacje:

$$ \operatorname{SO}\subsetneq\operatorname{O}\subsetneq\operatorname{CO}\\ \operatorname{SO}\subsetneq\operatorname{CSO}\subsetneq\operatorname{CO}\\ \operatorname{CO}=I\cdot\operatorname{O}\\ \operatorname{CSO}=I\cdot\operatorname{SO},$$

gdzie $I$ to grupa dylatacji.