Nierówność z funkcją Lamberta $x^{{\operatorname{W}(2ex)}^{2x}}+(1-x)^{{\operatorname{W}(2e(1-x))}^{2(1-x)}}\leq 1$
Pozwolić $0<x<1$ potem będzie :
$$x^{{\operatorname{W}(2ex)}^{2x}}+(1-x)^{{\operatorname{W}(2e(1-x))}^{2(1-x)}}\leq 1$$
Sprawa równości jest $x=0.5$.
Aby to pokazać, starałem się postępować zgodnie z lematami 7.1 i 7.2 tego artykułu Vasile Cirtoaje. Problem w tym, że wynikowe wyrażenie jest okropne!
Próbowałem także nierówności Bernoulliego z jakimkolwiek skutkiem, ponieważ nie jest wystarczająco ostra.
Aktualizacja 18.12.2020:
Jest to kolejna wypróbowana. Możemy zbudować takie przybliżenie:
Pozwolić $0<\beta<x\leq 0.5$ wtedy musimy wyznaczyć stałe takie, że:
$$x^{{\operatorname{W}(2ex)}^{2x}}\leq \frac{1}{2}\operatorname{W}^{\alpha}(2ex)$$
Mówiąc liczbowo, mamy $\frac{115}{100}<\alpha<\frac{125}{100}$
Aby zmniejszyć lukę, próbowałem wprowadzić funkcję liniową: $$x^{{\operatorname{W}(2ex)}^{2x}}\leq \frac{1}{2}\operatorname{W}^{\alpha}(2ex)+ax+b$$
Ale znowu nie wystarczy działać, więc możemy rozważyć ogólny wielomian, taki jak:
$$x^{{\operatorname{W}(2ex)}^{2x}}\leq \frac{1}{2}\operatorname{W}^{\alpha}(2ex)+\sum_{k=0}^{n}a_nx^n$$
Cóż, to pierwszy krok iw przyszłości spróbuję znaleźć współczynniki tego ogólnego wielomianu.
Aktualizacja 20.12.2020:
Możemy przeformułować problem jako:
Pozwolić $x,y>0$ takie że $ye^y+xe^x=2e$ potem będzie :
$$\left(\frac{xe^x}{2e}\right)^{(x)^{\frac{xe^x}{e}}}+\left(\frac{ye^y}{2e}\right)^{(y)^{\frac{ye^y}{e}}}\leq 1$$
Gdzie używam funkcji odwrotnej funkcji Lamberta.
Dobrze używając formularza $f(x)=\left(\frac{xe^x}{2e}\right)^{(x)^{\frac{xe^x}{e}}}=g(x)^{h(x)}$ Mogę pokazać, że funkcja $f(x)$ jest wypukły $(0,W(2e))$więc (próbowałem) możemy użyć nierówności Slatera, aby znaleźć górną granicę, tak jak to nie działa. Z drugiej strony możemy użyć nierówności Karamaty, ale nie próbowałem!
Cóż, jeśli użyjemy Karamaty, mam strategię:
Mamy nierówność Karamaty i $0\leq\varepsilon_n'\leq\varepsilon_n<y<x$:
$$f(x)+f(y)\leq f(x+\varepsilon_n)+f(y-\varepsilon_n')$$
Z $(y-\varepsilon_n')e^{y-\varepsilon_n'}+(x+\varepsilon_n)e^{x+\varepsilon_n}\geq 2e$
Teraz chcemy powtórzyć proces, aby otrzymać serię nierówności tego rodzaju:
$$f(x)+f(y)\leq f(x+\varepsilon_n)+f(y-\varepsilon_n')\leq f(x+\varepsilon_{n-1})+f(y-\varepsilon_{n-1}')< 1$$
Ale to bardzo skomplikowane.
To nie działa dla wszystkich wartości, ale myślę, że mamy nierówność $y> 0.5 \geq x$ :
$$p(x)=(1-x^{xe^{x-1}})^2+x^{xe^{x-1}} \frac{xe^{x-1}}{2} (2-x^{xe^{x-1}})-x^{xe^{x-1}} \frac{xe^{x-1}}{2} (1-x^{xe^{x-1}}) \ln\left(\frac{xe^{x-1}}{2}\right)$$ Mamy : $$f(x)+f(y)\leq p(y)+2^{-\varepsilon}p^{1+\varepsilon}(x)< 1$$
Z $0\leq \varepsilon \leq\frac{1}{10}$
Gdzie używam Lematu 7.2 z powyższego artykułu.
Ostatni pomysł:
Korzystając z twierdzenia o majoryzacji:
Pozwolić $a\geq b>0$ i $c\geq d >0$ i $n$ liczba naturalna na tyle duża, że:
$$a\geq c$$
I :
$$\left(a\frac{n}{n+1}+c\frac{1}{n+1}\right)\left(b\frac{n}{n+1}+d\frac{1}{n+1}\right)\geq cd$$
Potem będzie :
$$a+b\geq c+d$$
Dowód: to bezpośrednia konsekwencja nierówności Karamaty.
Mamy inne twierdzenie:
Pozwolić $2>x,y>0$ ,$n$ liczba naturalna wystarczająco duża i $\varepsilon>0 $
Jeśli mamy :
$$xy<1-\varepsilon $$ $$x+y<2-\varepsilon$$ potem będzie :
$$\ln\left(\frac{n}{n+1}+x\frac{1}{n+1}\right)+\ln\left(\frac{n}{n+1}+y\frac{1}{n+1}\right)\leq 0$$
Przykład:
Korzystając z twierdzenia o majoryzacji mamy ($x=0.4$):
$$(1-x)^{{\operatorname{W}(2e(1-x))}^{2(1-x)}}< 1-\operatorname{W}^{1.25}(2ex)0.5$$
I :
$$\left(\frac{1}{4000}x^{{\operatorname{W}(2ex)}^{2x}}+\frac{3999}{4000}\operatorname{W}^{1.25}(2ex)0.5\right)\left(\frac{1}{4000}(1-x)^{{\operatorname{W}(2e(1-x))}^{2(1-x)}}+\frac{3999}{4000}(1-\operatorname{W}^{1.25}(2ex)0.5)\right)< (1-\operatorname{W}^{1.25}(2ex)0.5)\operatorname{W}^{1.25}(2ex)0.5$$
Dzieląc obie strony przez RHS i używając drugiego twierdzenia, zauważając, że:
$$\frac{x^{{\operatorname{W}(2ex)}^{2x}}(1-x)^{{\operatorname{W}(2e(1-x))}^{2(1-x)}}}{\operatorname{W}^{1.25}(2ex)0.5(1-\operatorname{W}^{1.25}(2ex)0.5)}<1-\varepsilon$$
I :
$$\frac{x^{{\operatorname{W}(2ex)}^{2x}}}{\operatorname{W}^{1.25}(2ex)0.5}+\frac{(1-x)^{{\operatorname{W}(2e(1-x))}^{2(1-x)}}}{(1-\operatorname{W}^{1.25}(2ex)0.5)}<2-\varepsilon\quad (I)$$
Teraz myślę, że jest to łatwiejsze, ponieważ możemy wziąć logarytm i zbadać zachowanie funkcji.
Aby udowodnić $(I)$ możemy użyć powiązania:
Pozwolić $0<x<\frac{1}{100}$ :
$$e^x<(1+x)^2-x$$
Oczywiście, jeśli przeanalizujemy oddzielnie różne elementy LHS.
Potem się uczyć $(I)$ mamy całkiem niezłe przybliżenie:
Pozwolić $0< x \leq \frac{1}{2}$ potem będzie :
$${\operatorname{W}(2ex)}^{2x}\geq (2x)^{\frac{915}{1000}\left(x\right)^{\left(\frac{87}{100}\right)}}$$
W rzeczywistości mamy następujące udoskonalenie $(0,0.5]$ :
$$x^{{\operatorname{W}(2ex)}^{2x}}+(1-x)^{{\operatorname{W}(2e(1-x))}^{2(1-x)}}\leq x^{(2x)^{\frac{915}{1000}\left(x\right)^{\left(\frac{87}{100}\right)}}}+ (1-x)^{(2(1-x))^{\frac{915}{1000}\left((1-x)\right)^{\left(\frac{87}{100}\right)}}}\leq 1$$
Uwagi: Metoda wykorzystująca twierdzenie o majoryzacji ma dwie zalety. Musimy wybrać dwie wartości tego samego rzędu w odniesieniu do wartości w LHS. Jeden może być gorszy (a drugi konieczny wyższy), z drugiej strony związany wykładnikiem, jego dokładność zależy od początkowego przybliżenia w$(I)$. Wreszcie, jeśli podzielimy się na dwie części, LHS w$(I)$ a jeśli dla jednego okaże się silniejszy wynik, to drugi element jest trochę łatwiejszy do pokazania.
Opieram się na przybliżeniu $(0,1)$ które mają postać:
$$x^{(2x)^{\frac{915}{1000}\left(x\right)^{\left(\frac{87}{100}\right)}}}\simeq \left(\left(2^{(2x)^{x^{1.25}}} \frac{x}{2}\right)^{0.5}0.5^{0.5}*0.5^{{(2 (1-x))}^{x^{-0.25}}}\right)^{0.5}\quad (S)$$
Możesz bawić się współczynnikami $-0.25$ i $1.25$ które nie są najlepsze (zostaw komentarz, jeśli masz lepsze :-))
Możemy trochę poprawić $(S)$ używając logarytmu, który mamy na $[0.5,1)$:
$$x^{(2x)^{\frac{915}{1000}\left(x\right)^{\left(\frac{87}{100}\right)}}}\simeq \left(\left(2^{(2x)^{x^{3}}} \frac{x}{2}\right)^{0.5}0.5^{0.5}*0.5^{{(2 (1-x))}^{x^{-0.2}}}\right)^{0.5}-0.5\ln\left(\left(\left(2^{(2x)^{x^{3}}} \frac{x}{2}\right)^{0.5}0.5^{0.5}*0.5^{{(2 (1-x))}^{x^{-0.2}}}\right)^{0.5}\right)+0.5\ln\left(x^{(2x)^{\frac{915}{1000}\left(x\right)^{\left(\frac{87}{100}\right)}}}\right)\quad (S')$$
Możemy zastąpić współczynnik $\frac{915}{1000}$ przez $\frac{912}{1000}$,i $3$ przez $3.5$ i w końcu $-0.2$ przez $-0.19$ i myślę, że to ta sama kolejność, więc możemy zastosować twierdzenie o majoryzacji.
Masz jakiś pomysł na rozwiązanie tego problemu?
Dzięki
Odpowiedzi
Kilka myśli
Pokażę, jak używać ograniczeń w przypadku $0 < x < \frac{1}{10}$.
Oznaczać $F = W(2\mathrm{e}x)^{2x}$ i $G = W(2\mathrm{e}(1-x))^{2(1-x)}$. Musimy to udowodnić$x^F + (1-x)^G \le 1$.
Fakt 1 : Jeśli$u > 0$ i $0 \le v \le 1$, następnie $u^v \ge \frac{u}{u + v - uv}$.
(Uwaga: według nierówności Bernoulliego,$(\frac{1}{u})^v=(1+\frac{1}{u}-1)^v\leq 1 + (\frac{1}{u}-1)v = \frac{u + v - uv}{u}$.)
Fakt 2 :$0 \le 5 - 5F \le 1$ dla wszystkich $x\in (0, 1/2]$.
Fakt 3 :$1 \le G < 2$ dla wszystkich $x\in (0, 1/2]$.
Fakt 4 :$W(y) \ge \frac{y}{y + 1}$ dla wszystkich $y\ge 0$.
(Wskazówka: użyj$W(y)\mathrm{e}^{W(y)} = y$ dla wszystkich $y\ge 0$ i to $u \mapsto u\mathrm{e}^u$ ściśle rośnie $(0, \infty)$.)
Fakt 5 :$F \ge \left(\frac{2\mathrm{e}x}{1 + 2\mathrm{e}x}\right)^{2x}$ dla wszystkich $x > 0$. (Wykorzystaj fakt 4.)
Fakt 6 :$G = W(2\mathrm{e}(1-x))^{1 - 2x} W(2\mathrm{e}(1-x)) \ge \frac{W(2\mathrm{e}(1-x))^2}{2x W(2\mathrm{e}(1-x)) + 1 - 2x}$ dla wszystkich $x \in (0, 1/2]$.
(Wskazówka: skorzystaj z faktu 1,$u = W(2\mathrm{e}(1-x))$, $v = 1-2x$.)
Fakt 7 :$W(2\mathrm{e}(1-x)) \ge \frac{48}{35} - \frac{3}{5}x$ dla wszystkich $x$ w $(0, 1/10)$.
Fakt 8 :$G \ge \frac{9(16-7x)^2}{-1470x^2+910x+1225}$ dla wszystkich $x$ w $(0, 1/10)$. (Wykorzystaj fakty 6-7.)
Otóż, zgodnie z faktami 1-2, mamy $$x^F = \frac{x}{x^{1-F}} = \frac{x}{\sqrt[5]{x}^{5 - 5F} } \le x + (x^{4/5} - x)(5 - 5F).$$ (Uwaga: $u = \sqrt[5]{x}, v = 5-5F$.)
Zgodnie z faktami 1, 3 mamy $$(1-x)^G = \frac{(1-x)^2}{(1-x)^{2-G}} \le (1-x)^2 + x(1-x)(2-G).$$ (Uwaga: $u = 1-x, v = 2-G$.)
Wystarczy to udowodnić $$ x + (x^{4/5} - x)(5 - 5F) + (1-x)^2 + x(1-x)(2-G) \le 1$$ lub $$5(x^{4/5} - x)(1 - F) \le x(1-x)(G-1).$$
Zgodnie z faktami 5, 8 wystarczy to udowodnić $$5(x^{4/5} - x)\left(1 - \left(\frac{2\mathrm{e}x}{1 + 2\mathrm{e}x}\right)^{2x}\right) \le x(1-x)\left(\frac{9(16-7x)^2}{-1470x^2+910x+1225}-1\right).$$
Pominięte.
Aby problem był bardziej symetryczny, niech $x=t+\frac 12$ i rozwiń funkcję jako szereg Taylora $t=0$.
Będziesz miał $$f(t)=1+\sum_{n=1}^p a_n t^{2n}$$ gdzie $a_n$są wielomiany stopnia $2n$ w $k=\log(2)$ $$a_1=\left\{2,-\frac{13}{4},\frac{1}{2}\right\}$$ $$a_2=\left\{\frac{15}{4},-\frac{1607}{192},\frac{439}{96},-\frac{23}{24},\frac{1}{24}\right\}$$ $$a_3=\left\{\frac{14453}{2880},-\frac{331189}{23040},\frac{142597}{11520},-\frac{7 9}{16},\frac{541}{576},-\frac{11}{160},\frac{1}{720}\right\}$$ $$a_4=\left\{\frac{294983}{53760},-\frac{10787687}{573440},\frac{19112773}{860160}, -\frac{1149103}{92160},\frac{368011}{92160},-\frac{5243}{7680},\frac{15}{2 56},-\frac{43}{20160},\frac{1}{40320}\right\}$$ Wszystkie te współczynniki są ujemne (tak nie jest $n \geq 5$).
Racjonalność współczynników $$g(t)=1-\frac{64 t^2}{5119}-\frac{121 t^4}{738}-\frac{261 t^6}{598}-\frac{182 t^8}{865}+\frac{2309 t^{10}}{1084}+\frac{16024 t^{12}}{1381}+\frac{26942 t^{14}}{613}+O\left(t^{16}\right)$$
Używając powyższych terminów, dopasowanie jest prawie idealne dla $0\leq t\leq 0.4$ .
Pomiędzy tymi granicami $$\int_0^{0.4}\Big[f(t)-g(t)\big]^2\,dt=1.91\times 10^{-10}$$
Niesamowite byłoby udowodnienie, że minimalna wartość funkcji jest nieco większa niż $0.99$.