Znajdź minimalną wartość w ramce danych Pandas i dodaj etykietę do nowej kolumny

Dec 18 2020

Jakie ulepszenia mogę wprowadzić w kodzie pandy w języku Python, aby był bardziej wydajny? W moim przypadku mam tę ramkę danych

In [1]: df = pd.DataFrame({'PersonID': [1, 1, 1, 2, 2, 2, 3, 3, 3],
                           'Name': ["Jan", "Jan", "Jan", "Don", "Don", "Don", "Joe", "Joe", "Joe"],
                           'Label': ["REL", "REL", "REL", "REL", "REL", "REL", "REL", "REL", "REL"],
                           'RuleID': [55, 55, 55, 3, 3, 3, 10, 10, 10],
                           'RuleNumber': [3, 4, 5, 1, 2, 3, 234, 567, 999]})

Co daje taki wynik:

In [2]: df
Out[2]: 
   PersonID Name Label  RuleID  RuleNumber
0         1  Jan   REL      55          3
1         1  Jan   REL      55          4
2         1  Jan   REL      55          5
3         2  Don   REL       3          1
4         2  Don   REL       3          2
5         2  Don   REL       3          3
6         3  Joe   REL      10        234
7         3  Joe   REL      10        567
8         3  Joe   REL      10        999

W tym miejscu muszę zaktualizować pola w kolumnie Etykieta na GŁÓWNE dla najniższej wartości reguły skojarzonej z każdym identyfikatorem reguły zastosowanym do identyfikatora i imienia osoby. Dlatego wyniki muszą wyglądać następująco:

In [3]: df
Out[3]:
   PersonID Name Label  RuleID  RuleNumber
0         1  Jan  MAIN      55           3
1         1  Jan   REL      55           4
2         1  Jan   REL      55           5
3         2  Don  MAIN       3           1
4         2  Don   REL       3           2
5         2  Don   REL       3           3
6         3  Joe  MAIN      10         234
7         3  Joe   REL      10         567
8         3  Joe   REL      10         999

Oto kod, który napisałem, aby to osiągnąć:

In [4]:

df['Label'] = np.where(
        df['RuleNumber'] ==
        df.groupby(['PersonID', 'Name', 'RuleID'])['RuleNumber'].transform('min'),
        "MAIN", df.Label)

Czy istnieje lepszy sposób aktualizowania wartości w kolumnie Etykieta? Czuję, że jestem brutalny, a to może nie być najbardziej efektywny sposób, aby to zrobić.

Do uzyskania wyniku użyłem następujących wątków SO:

Zastąp wartości kolumn w grupie i warunku

Zastąp wartości w grupie na podstawie wielu warunków

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.idxmin.html

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.transform.html

Używanie pand do znajdowania minimalnych wartości zgrupowanych wierszy

Każda rada będzie mile widziana.

Dziękuję Ci.

Odpowiedzi

1 DavidErickson Dec 18 2020 at 03:14

Wygląda na to, że możesz filtrować według grup, idxminniezależnie od posortowanej kolejności i RuleNumberna tej podstawie aktualizować . Można użyć loc, np.where, masklub where, co następuje:

df.loc[df.groupby(['PersonID', 'Name', 'RuleID'])['RuleNumber'].idxmin(), 'Label'] = 'MAIN'

LUB np.wheretak jak próbowałeś:

df['Label'] = (np.where((df.index == df.groupby(['PersonID', 'Name', 'RuleID'])
                         ['RuleNumber'].transform('idxmin')), 'MAIN', 'REL'))
df
Out[1]: 
   PersonID Name Label  RuleID  RuleNumber
0         1  Jan  MAIN      55           3
1         1  Jan   REL      55           4
2         1  Jan   REL      55           5
3         2  Don  MAIN       3           1
4         2  Don   REL       3           2
5         2  Don   REL       3           3
6         3  Joe  MAIN      10         234
7         3  Joe   REL      10         567
8         3  Joe   REL      10         999

Użycie masklub jego odwrotność whererównież zadziała:

df['Label'] = (df['Label'].mask((df.index == df.groupby(['PersonID', 'Name', 'RuleID'])
                         ['RuleNumber'].transform('idxmin')), 'MAIN'))

LUB

df['Label'] = (df['Label'].where((df.index != df.groupby(['PersonID', 'Name', 'RuleID'])
                         ['RuleNumber'].transform('idxmin')), 'MAIN'))
1 Scared Dec 18 2020 at 03:25
import pandas as pd

df = pd.DataFrame({'PersonID': [1, 1, 1, 2, 2, 2, 3, 3, 3],
'Name': ["Jan", "Jan", "Jan", "Don", "Don", "Don", "Joe", "Joe", "Joe"],
'Label': ["REL", "REL", "REL", "REL", "REL", "REL", "REL", "REL", "REL"],
'RuleID': [55, 55, 55, 3, 3, 3, 10, 10, 10],
'RuleNumber': [3, 4, 5, 1, 2, 3, 234, 567, 999]})

df.loc[df.groupby('Name')['RuleNumber'].idxmin()[:], 'Label'] = 'MAIN'
ScottBoston Dec 18 2020 at 03:45

Użyj duplicatedna PersonID:

df.loc[~df['PersonID'].duplicated(),'Label'] = 'MAIN'
print(df)

Wynik:

   PersonID Name Label  RuleID  RuleNumber
0         1  Jan  MAIN      55           3
1         1  Jan   REL      55           4
2         1  Jan   REL      55           5
3         2  Don  MAIN       3           1
4         2  Don   REL       3           2
5         2  Don   REL       3           3
6         3  Joe  MAIN      10         234
7         3  Joe   REL      10         567
8         3  Joe   REL      10         999