Statistik - Dezilstatistik
Ein System zum Aufteilen der gegebenen zufälligen Verteilung der Daten oder Werte in einer Reihe in zehn Gruppen ähnlicher Häufigkeit ist als Dezile bekannt.
Formel
$ {D_i = l + \ frac {h} {f} (\ frac {iN} {10} - c); i = 1,2,3 ..., 9} $
Wo -
$ {l} $ = untere Grenze der Dezilgruppe.
$ {h} $ = Breite der Dezilgruppe.
$ {f} $ = Häufigkeit der Dezilgruppe.
$ {N} $ = Gesamtzahl der Beobachtungen.
$ {c} $ = kumulative Häufigkeit vor der Dezilgruppe.
Beispiel
Problem Statement:
Berechnen Sie die Dezile der Verteilung für die folgende Tabelle:
fi | Fi | |
---|---|---|
[50-60] | 8 | 8 |
[60-60] | 10 | 18 |
[70-60] | 16 | 34 |
[80-60] | 14 | 48 |
[90-60] | 10 | 58 |
[100-60] | 5 | 63 |
[110-60] | 2 | 65 |
65 |
Solution:
Berechnung des ersten Dezils
$ {\ frac {65 \ times 1} {10} = 6,5 \\ [7pt] \, D_1 = 50 + \ frac {6,5 - 0} {8} \ times 10, \\ [7pt] \, = 58,12} $
Berechnung des zweiten Dezils
$ {\ frac {65 \ times 2} {10} = 13 \\ [7pt] \, D_2 = 60 + \ frac {13 - 8} {10} \ times 10, \\ [7pt] \, = 65} $
Berechnung des dritten Dezils
$ {\ frac {65 \ times 3} {10} = 19,5 \\ [7pt] \, D_3 = 70 + \ frac {19,5 - 18} {16} \ times 10, \\ [7pt] \, = 70,94} $
Berechnung des vierten Dezils
$ {\ frac {65 \ times 4} {10} = 26 \\ [7pt] \, D_4 = 70 + \ frac {26 - 18} {16} \ times 10, \\ [7pt] \, = 75} $
Berechnung des fünften Dezils
$ {\ frac {65 \ times 5} {10} = 32,5 \\ [7pt] \, D_5 = 70 + \ frac {32,5 - 18} {16} \ times 10, \\ [7pt] \, = 79,06} $
Berechnung des sechsten Dezils
$ {\ frac {65 \ times 6} {10} = 39 \\ [7pt] \, D_6 = 70 + \ frac {39 - 34} {14} \ times 10, \\ [7pt] \, = 83,57} $
Berechnung des siebten Dezils
$ {\ frac {65 \ times 7} {10} = 45,5 \\ [7pt] \, D_7 = 80 + \ frac {45,5 - 34} {14} \ times 10, \\ [7pt] \, = 88,21} $
Berechnung des achten Dezils
$ {\ frac {65 \ times 8} {10} = 52 \\ [7pt] \, D_8 = 90 + \ frac {52 - 48} {10} \ times 10, \\ [7pt] \, = 94} $
Berechnung des neunten Dezils
$ {\ frac {65 \ times 9} {10} = 58,5 \\ [7pt] \, D_9 = 100 + \ frac {58,5 - 58} {5} \ times 10, \\ [7pt] \, = 101} $