Tìm thấy $\int _0^{\infty }\frac{\ln \left(1+x\right)}{1-x^2+x^4}\:\mathrm{d}x$

Aug 17 2020

Tôi có thể đánh giá theo những cách nào $$\int _0^{\infty }\frac{\ln \left(1+x\right)}{1-x^2+x^4}\:\mathrm{d}x$$ Tôi đã thử một số phương pháp nhưng không có tác dụng hoặc đơn giản hóa mọi thứ và tôi không thể nghĩ đến sự thay thế có thể biến mọi thứ tốt hơn, trong khi sự thay thế $x=1/x$ được $$\int _0^{\infty }\frac{\ln \left(1+x\right)}{1-x^2+x^4}\:\mathrm{d}x-\int _0^{\infty }\frac{x^2\ln \left(x\right)}{1-x^2+x^4}\:\mathrm{d}x$$ Tôi không biết làm thế nào để tiến hành, tách tích phân ở điểm 1 cũng không giúp được nhiều.

Tích phân cũng có thể được biểu thị bằng $$I=\int _0^1\frac{\left(1+x^2\right)\ln \left(1+x\right)}{1-x^2+x^4}\:\mathrm{d}x-\int _0^1\frac{x^2\ln \left(x\right)}{1-x^2+x^4}\:\mathrm{d}x$$ tích phân đầu tiên như được đề cập trong các nhận xét đã được đánh giá và $$I=\frac{\pi }{6}\ln \left(2+\sqrt{3}\right)-\int _0^1\frac{x^2\ln \left(x\right)}{1-x^2+x^4}\:\mathrm{d}x$$ Nhưng làm thế nào để giải quyết cái thứ hai?

Trả lời

4 Quanto Sep 05 2020 at 08:20

Ghi chú

\begin{align} I& =\int _0^{\infty }\frac{\ln (1+x)}{1-x^2+x^4}dx= \int _0^{1}\frac{\ln (1+x)}{1-x^2+x^4}dx +\int _1^{\infty }\frac{\ln (1+x)}{\underset{x\to 1/x} {1-x^2+x^4}}dx\\ &= \int _0^1\frac{(1+x^2)\ln (1+x)-x^2\ln x}{1-x^2+x^4}dx\\ \end{align}

Tích hợp theo các bộ phận thông qua

$$d\left( \cot^{-1}\frac x{x^2-1}\right)=\frac{1+x^2}{1-x^2+x^4}dx$$ $$d\left( \frac12\tan^{-1}\frac x{1-x^2} - \frac1{2\sqrt3}\tanh^{-1}\frac {\sqrt3x}{1+x^2}\right)= \frac{x^2}{1-x^2+x^4}dx $$ để thể hiện tích phân như \begin{align} I= I_1 -\frac1{2\sqrt3}I_2 +\frac12I_3\tag1 \end{align}

Ở đâu $$ I_1 = \int_0^1 \frac{dx}{1+x} \cot^{-1}\frac {x}{1-x^2},\>\>\>\>\> I_2 = \int_0^1 \frac{dx}{x} \tanh^{-1}\frac {\sqrt3x}{1+x^2}\\ I_3 = \int_0^1 \frac{dx}{x} \tan^{-1}\frac {x}{1-x^2} $$

Để đánh giá $I_1$, để cho $J_1(a) =\int_0^1 \frac{dx}{1+x} \cot^{-1}\frac {2x\sin a}{1-x^2}$ \begin{align} J_1’(a) &= \int_0^1 \frac{2\cos a (x-x^2)dx}{(x^2+1)^2-(2x\cos a)^2}= - \frac\pi4\tan\frac a2+\frac12\left( a\>{\csc a}+ \ln\tan\frac a2\right) \end{align} \begin{align} I_1 &=J_1(\frac\pi6) = J_1(0)+\int_0^{\frac\pi6}J_1’(a)da \\ &= \frac\pi2\ln2-\frac\pi4 \int_0^{\frac\pi6}\tan\frac a2 da+\frac12\int_0^{\frac\pi6} d\left( a\ln\tan\frac a2\right)\\ &=\frac\pi2\ln2 -\frac\pi2\ln\cos\frac\pi{12}-\frac\pi{12}\ln\tan\frac\pi{12}= \frac\pi6\ln(2+\sqrt3)\tag2 \end{align}

Để đánh giá $I_2$, để cho $J_2(a) =\int_0^1 \frac{dx}{x} \tanh^{-1}\frac {2ax}{1+x^2}$ \begin{align} J_2’(a) &= \int_0^1 \frac{2 (1+x^2)}{(x^2+1)^2-(2ax)^2}dx = \frac\pi2\frac1{\sqrt{1-a^2}} \end{align} \begin{align} I_2 &=J_2(\frac{\sqrt3}2) = \int_0^{\frac{\sqrt3}2}J_2’(a)da = \frac\pi2 \int_0^{\frac{\sqrt3}2} \frac{da}{\sqrt{1-a^2}}=\frac{\pi^2}6\tag3 \end{align} Để đánh giá $I_3$ $$I_3 = \int_0^1 \frac{dx}{x} \tan^{-1}\frac {x}{1-x^2} = \int_0^1 \frac{\tan^{-1}x}x dx+ \int_0^1\underset{x^3\to x}{\frac{\tan^{-1}x^3}x}dx\\ = \frac43\int_0^1 \frac{\tan^{-1}x}x dx= \frac43G\tag4 $$

Cắm (2), (3) và (4) vào (1) để lấy

$$I=\frac\pi6\ln(2+\sqrt3) -\frac{\pi^2}{12\sqrt3} +\frac23G $$